

Distributional Modelling in R

Case Studies II – Discrete Distributions

Thomas Kneib, Nikolaus Umlauf https://nikum.org/dmr.html

Count Data Regression

• Standard approach: Log-linear Poisson models embedded in the generalized linear model framework where

 $y_i \sim \text{Po}(\lambda_i), \quad \text{and} \quad \lambda_i = \exp(\mathbf{x}'_i \boldsymbol{\gamma}).$

- In many practical applications, we observe one or both of the following challenges:
 - Zero inflation, i.e. excess of zeros compared to standard count data distributions such as Poisson.
 - Overdispersion, i.e. variances of the responses exceed the expectation (unlike in Poisson regression).

Zero-Inflated Count Data Regression

- Basic idea of zero-inflated count data regression models: Zeros may arise from either
 - structural zeros, i.e. observations that are "always zero" and,
 - zeros arising from the count data distribution.
- If y_i is a count data response, assume that y_i is generated as

$$y_i = \kappa_i \tilde{y}_i$$

where κ_i is a binary indicator for structural zeros, i.e.

$$\kappa_i \sim \mathsf{Be}(\mathbf{1} - \pi_i)$$

and \tilde{y}_i follows a standard count data distribution such as Poisson or negative binomial.

Interpretation

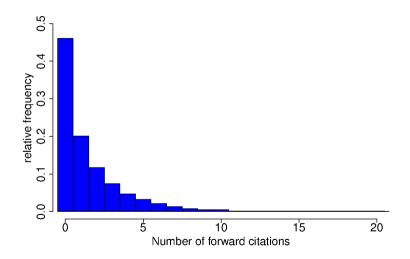
- If the binary indicator κ_i is zero, we always obtain zero as response (structural zeros) \Rightarrow Structural zeros occur with probability π_i .
- If the binary indicator κ_i is one, y_i is realized from the count data model.
- Mixed density for the responses y_i:

$$p(y_i) = \pi_i \mathbb{1}_{\{0\}}(y_i) + (1 - \pi_i) \tilde{p}(y_i)$$

where $\tilde{p}(y_i)$ is the density for the count data distribution.

• For the zero-inflated distribution we obtain

$$E(\mathbf{y}_i) = (\mathbf{1} - \pi_i)E(\tilde{\mathbf{y}}_i)$$


and

$$Var(y_i) = (1 - \pi_i)Var(\tilde{y}_i) + \pi_i(1 - \pi_i) [E(\tilde{y}_i)]^2$$
.

Example: Patent Citations

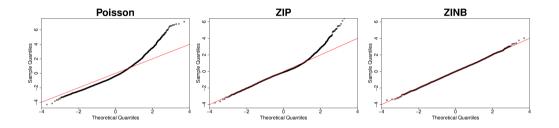
- Information on 4,805 patents issued by the European Patent Office (EPO) between 1980 and 1997.
- Response variable of interest: number of forward citations.
- Explanatory variables include the grant year, the no. of designated states the patent applies to, and the no. of EPO claims.
- Characteristics of the response:
 - 46% zeros (many patents are never cited).
 - Maximum no. of citations: 40.
 - Average no. of citations: 1.63
 - Variance: 7.35

Frequency Histogram

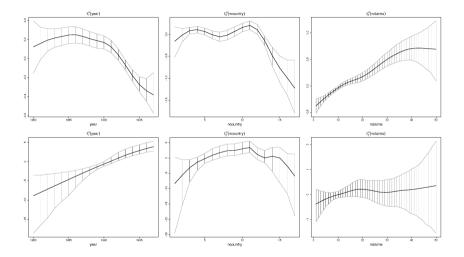
Variables

Continuous covariates					
	description	mean	std	min/max	
year	grant year	1991		1980/1997	
ncountry	no. of designated states in Europe	7.77	4.12	1/17	
nclaims	no. of EPO claims	12.33	8.13	1/50	
Binary covariates					
	description	categories	rel freq		
biopharm	patent from biotech/pharma sector	yes=1	43.9%		
ustwin	U.S. twin exists	yes=1	61.3%		
patus	patentholder of the patent from U.S.	yes=1	33.2%		
patgsgr	owner from Switzerland, Ger or GB	yes=1	23.7%		
opp	oppositions	yes=1	41.1%		

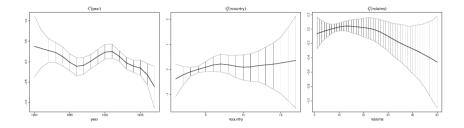
Model Specification and Comparison


- We compare Poisson, zero-inflated Poisson and zero-inflated negative binomial models.
- Basic predictor structure for all model parameters:

$$\eta = \mathbf{x}' \gamma + s_1(\texttt{year}) + s_2(\texttt{ncountry}) + s_3(\texttt{nclaims}).$$


• Scores (averages from ten-fold cross-validation):

Model	Brier Score	Logarithmic Score	Spherical Score
Poisson	-0.8180	-2.3926	0.0070
ZIP	-0.7480	-2.0197	0.0077
ZINB	-0.7439	-1.7604	0.0074


Quantile Residuals

Estimated Nonlinear Effects

Estimated Nonlinear Effects

