Distributional Modelling in R
R - Packages

The following is an (incomplete) overview of R packages that can be used to estimate Generalized Additive
Models for Location Scale and Shape (GAMLSS). Each package presented is accompanied by a short example
using the dataset rent from the package gamiss.data. Comprehensive examples and further assistance can
be found in the documentation of the respective packages and in the associated software papers.

1 gamiss

The gamliss package stands as one of the pioneering packages capable of estimating versatile distributional
regression models incorporating diverse model terms. Its primary model fitting function, gamlss (), facilitates
this process. Additionally, the accompanying gamlss.dist package offers a range of distributions to choose
from. With gamlss, users can model distributions with up to four parameters, providing a comprehensive
framework for statistical modeling and analysis.

Examples:

R> library("gamlss")
R> ## Load the Munich rent data.
R> data("rent", package = "gamlss.data")

R> ## Estimate model using the three parameter BCCGo distribution.
R> b <- gamlss(R ~ pb(F1) + pb(A) + H + loc,

+ sigma.fo = ~ pb(F1) + pb(4) + H + loc,

+ nu.fo = ~ pb(F1) + pb(4A) + H + loc,

+ family = BCCGo, data = rent)

R> ## Show model diagnostic plots.
R> plot(b)

R> ## Wormplot.

R> wp(b)

R> ## Model summary.

R> summary (b)

R> ## AIC()

R> GAIC(b)

R> ## Effect plots.

R> term.plot(b, pages
R> term.plot(b, pages
R> term.plot (b, pages

1, what = "mu", ask = FALSE)
1, what = "sigma", ask = FALSE)
1, what = "nu", ask = FALSE)

R> ## Predict parameters.

R> p <- predictAll(b, newdata = rent[1:5, ])

R> ## Compute log-likelihood using the family.

R> ## Each family has a d*, p*, g* and r* function.

R> d <- with(p, dBCCGo(y, mu = mu, sigma = sigma, nu = nu, log = TRUE))
R> sum(d)

For more examples please see the corresponding paper
https://www.jstatsoft.org/article/view/v0231i07
A list of books on GAMLSS can be found here

https://www.gamlss.com/


https://www.jstatsoft.org/article/view/v023i07
https://www.gamlss.com/

2 gamlss2

The primary purpose of this package is to facilitate the creation of advanced infrastructures designed to en-
hance the GAMLSS modeling framework. Notably, the gamlss2 package represents a significant overhaul of
its predecessor, gamlss, with a key emphasis on improving estimation speed and incorporating more flexible
infrastructures. These enhancements enable the seamless integration of various algorithms into GAMLSS,
including gradient boosting, Bayesian estimation, regression trees, and forests, fostering a more versatile and
powerful modeling environment.

Moreover, the package expands its compatibility by supporting all model terms from the base R mgcv pack-
age. Additionally, the gamlss2 package introduces the capability to accommodate more than four parameter
families. Essentially, this means that users can now specify any type of model using these new infrastructures,
making the package highly flexible and accommodating to a wide range of modeling requirements.

The development version of gamlss2 is hosted on github at and can be installed via

R> devtools::install_github("gamlss-dev/gamlss2")
Examples:

R> library("gamlss2")
R> ## Load the Munich rent data.
R> data("rent", package = "gamlss.data")

R> ## Estimate model using the three parameter BCCGo distribution.

R> ## Model formula, uses R package Formula infrastructures (or list of formulas).
R> f <- R 7 s(F1) + s(A) + H + loc |

+ s(F1) + s(4) + H + loc |

+ s(F1) + s(Ad) + H + loc

R> ## Estimation.

R> b <- gamlss2(f, family = BCCGo, data = rent)

R> ## Show model diagnostic plots.
R> plot(b, which = "resid")

R> ## Model summary.

R> summary(b)

R> ## AIC()

R> GAIC(b)

R> ## Effect plots.
R> plot(b)

R> ## Predict parameters.

R> p <- predict(b, newdata = rent[1:5, ], type = "parameter")
R> ## Compute log-likelihood using the family.
R> family(b)$loglik (rent$R[1:5], p)

R> ## Density.

R> family(b)$d(rent$R[1:5], p)

R> ## (Quantiles.

R> family(b)$q(0.01, p)

R> family(b)$q(0.5, p)

R> family(b)$q(0.99, p)

R> ## Random numbers.

R> family(b)$r(1, p)

R> family(b)$r(10, pl1, 1)

3 mgcv

The contributed R package mgcv stands out as perhaps the most extensively utilized package for flexible
regression modeling. Its versatile infrastructures enable the creation of user-specific smooth terms within gen-
eral models, offering unparalleled flexibility. Moreover, mgcv excels in estimating Generalized Additive Models
(GAMs) even with very large datasets. However, despite its extensive capabilities, the range of implemented
distributions for estimating Generalized Additive Models for Location Scale and Shape (GAMLSS) is not as



expansive. Additionally, implementing new distributions for GAMLSS is not straightforward within the mgev
framework.

Examples:

R> library("mgcv")
R> ## Load the Munich rent data.
R> data("rent", package = "gamlss.data")

R> ## Estimate model using the two parameter normal distribution.
R> ## Model formula.

R> f <- list(

+ R ~ s(F1) + s(4A) + H + loc,

+ ~ s(F1) + s(4) + H + loc

+ )

R> ## Estimation.

R> b <- gam(f, family = gaulss, data = rent)

R> ## Show model diagnostic plots.
R> gam.check(b)

R> ## Model summary.

R> summary (b)

R> ## AIC()

R> AIC(Db)

R> ## Effect plots.

R> plot(b, pages = 1)

R> plot(b, pages = 1, scale = 0)

R> plot(b, pages = 1, scale = 0, scheme = 1)

R> ## Predict parameters.

R> p <- predict(b, newdata = rent[1:5, ], type = "response")

R> ## Compute log-likelihood.

R> sum(dnorm(rent$R[1:5], mean = p[, 1], sd = 1/p[, 2], log = TRUE))
R> ## (Quantiles.

R> gnorm(0.01, mean = p[, 1], sd = 1/p[, 21)

R> gnorm(0.5, mean = p[, 1], sd = 1/p[, 2])

R> gqnorm(0.99, mean = p[, 1], sd = 1/p[, 21)

4 bamlss

The R package bamilss offers robust infrastructures tailored for estimating Bayesian additive models for lo-
cation scale and shape. Users can define smooth terms utilizing the flexible functionalities provided by the
mgcv package. Additionally, the package allows users to implement custom optimizer and sampler functions,
enhancing flexibility and adaptability. Key features include a backfitting algorithm for posterior mode estimation,
an efficient Markov Chain Monte Carlo (MCMC) algorithm for comprehensive Bayesian inference, a gradient
boosting algorithm for variable selection, and an interface to TensorFlow through the keras package for esti-
mating deep distributional neural network models, among others.

Examples:

R> library("bamlss")

R> library("gamlss.dist")

R> ## Load the Munich rent data.

R> data("rent", package = "gamlss.data")

R> ## Estimate model using the three parameter BCCGo distribution.

R> ## Model formula, uses R package Formula infrastructures (or list of formulas).
R> f <- R "~ s(F1) + s(A) + H + loc |

+ s(F1) + s(A) + H + loc |

+ s(F1) + s(A) + H + loc

R> ## Estimation.

R> b <- bamlss(f, family = BCCGo, data = rent)



R> ## Show model diagnostic plots.
R> plot(b, which = 3:5)

R> ## Model summary.

R> summary (b)

R> ## DIC()

R> DIC(b)

R> ## Effect plots.

R> plot(b, pages = 1)

R> ## Traceplots.

R> plot(b, which = "samples")

R> ## Predict parameters for all samples.

R> p <- predict(b, newdata = rent[1:5, ], type = "parameter", FUN
R> ## Compute the mean over samples instead (default).

R> p <- predict(b, newdata = rent[1:5, ], type = "parameter", FUN = mean)
R> ## Predictions are lists, transform to data frame.

R> p <- as.data.frame(p)

R> ## Compute log-likelihood using the family.

R> family(b)$loglik (rent$R[1:5], p)

R> ## Density.

R> family(b)$d(rent$R[1:5], p)

R> ## Quantiles.

R> family(b)$q(0.01, p)

R> family(b)$q(0.5, p)

R> family(b)$q(0.99, p)

R> ## Random numbers.

R> family(b)$r(1, p)

R> family(b)$r(10, pl1, 1)

identity)

For more examples please see the corresponding paper
https://www.jstatsoft.org/article/view/v100i04

5 gamboostLSS

The core functionality of the R package gamboostLSS revolves around a gradient boosting algorithm, specif-
ically designed to facilitate automatic variable selection within the framework of Generalized Additive Models
for Location Scale and Shape (GAMLSS). This package seamlessly integrates with all families available in the
gamlss.dist package, ensuring a comprehensive range of distribution options. Additionally, gamboostLSS of-
fers built-in features for cross-validation and provides a selection of base learners tailored for estimating flexible
smooth effect models.

Examples:

R> library("gamboostLSS")
R> ## Load the Munich rent data.
R> data("rent", package = "gamlss.data")

R> ## Model formula with base learners.

R> f <- R ~ bbs(F1) + bbs(4) + bols(H) + bols(loc)

R> ## Control arguments.

R> ctrl <- boost_control(trace = TRUE, mstop = c(mu = 1100, sigma = 1000, nu = 1000))
R> ## Estimation.

R> b <- gamboostLSS(f, families = as.families(BCCGo, stabilization = "MAD"),
+ data = rent, control = ctrl)

R> ## Plot effects.

R> par(mfrow = c(3, 4))

R> plot(b, type = "1")

R> ## Show stopping iteration.

R> mstop (b)

For more examples please see the corresponding paper
https://www.jstatsoft.org/article/view/v074i01


https://www.jstatsoft.org/article/view/v100i04
https://www.jstatsoft.org/article/view/v074i01

6 quantreg

The R package quantreg facilitates quantile regression analysis, offering efficient computation, robust infer-
ence, and diagnostic tools for assessing model fit. It allows users to specify models using a formula interface,
compute standard errors and confidence intervals, and customize functionality as needed. quantreg is widely
used in various fields for analyzing conditional quantiles of the response variable.

Examples:

R> library("quantreg")
R> ## Load the Munich rent data.
R> data("rent", package = "gamlss.data")

R> ## Model formula.

R> f <- R ~“ns(Fl, df = 4) + ns(A, df = 4) + H + loc
R> ## Specify quantiles for estimation.

R> tau <- seq(0.01, 0.99, by = 0.01)

R> ## Estimation.

R> b <- rq(f, data = rent, tau = tau)

R> ## Plot estimated coefficients.

R> plot(b)

R> ## Predict for each quantile.

R> p <- predict(b, newdata = rent[1:5, ])

7 qgam

The qgam package specializes in implementing quantile generalized additive models (QGAM). Leveraging the
infrastructures of the mgev package, it efficiently establishes the additive predictors required for modeling.
Despite its notable flexibility, it's worth noting that computation times may extend considerably when handling
very large datasets.

Examples:

R> library("qgam")
R> ## Load the Munich rent data.
R> data("rent", package = "gamlss.data")

R> ## Model formula.

R> f <- R ~ s(F1) + s(A) + H + loc

R> ## Estimation.

R> b <- ggam(f, data = rent, qu = 0.5)

R> ## Plot effects.

R> plot(b, pages = 1, scheme = 1)

R> ## Predict.

R> p <- predict(b, newdata = rent[1:5, ])

R> ## Multiple quantiles.

R> b <- mqgam(f, data = rent, qu = ¢(0.01, 0.5, 0.99))
R> ## Predict.

R> p <- qdo(b, ¢c(0.01, 0.5, 0.99), predict, newdata = rent[1:5, ])
R> ## Pinball loss.

R> pinLoss(rent$R[1:5], p[[1]], 0.01)

R> pinLoss(rent$R[1:5], p[[2]], 0.5)

R> pinLoss(rent$R[1:5], p[[3]], 0.99)

For more examples please see the corresponding paper

https://www. jstatsoft.org/article/view/v100i09

8 disttree

The disttree package is useful for estimating full probabilistic distributional trees and forests. Trees are grown
based on instability tests of the score vectors and split variables, resulting in each leaf node containing a
complete distributional model. The package is work in progress and only available from R-Forge at the moment.


https://www.jstatsoft.org/article/view/v100i09

Installation:

R> if(!require("disttree")) {

+ install.packages("disttree", repos = "http://R-Forge.R-project.org",
+ dependencies = TRUE)

+ F

Examples:

R> library("disttree")
R> ## Load the Munich rent data.
R> data("rent", package = "gamlss.data")

R> ## Estimate model using the two parameter GA distribution.
R>f <-R ~F1 +A+H+ loc

R> ## Estimation.

R> b <- disttree(f, family = GA, data = rent)

R> ## Plot the tree.
R> plot(b)

R> ## Estimate a forest.
R> b <- distforest(f, family = GA, data = rent, ntree = 100)

R> ## Predict parameters.
R> p <- predict(b, newdata = rent[1:5, ])

R> ## Compute log-likelihood using the GA distribution.
R> sum(dGA(rent$R[1:5], mu = p$mu, sigma = p$sigma, log = TRUE))

R> ## (Quantiles.

R> qGA(0.01, mu = p$mu, sigma = p$sigma)
R> qGA(0.5, mu = p$mu, sigma = p$sigma)
R> qGA(0.99, mu = p$mu, sigma = p$sigma)

R> ## Random numbers.
R> rGA(1, mu = p$mu, sigma = p$sigma)



	gamlss
	gamlss2
	mgcv
	bamlss
	gamboostLSS
	quantreg
	qgam
	disttree

