
Advanced Bayesian Methods:
Theory and Applications in R

Big Data and Variable Selection

Nikolaus Umlauf
https://nikum.org/abm.html

https://nikum.org/abm.html

Estimation

The main building block of regression model algorithms is the probability density
function dy(y|θ1, . . . ,θK).

Estimation typically requires to evaluate the log-likelihood

ℓ(β;y,X) =
n∑
i=1

log dy(yi; θ1(xi;β1), . . . , θK(xi;βK)),

with X = (X1, . . . ,XK).

The log-posterior (frequentist penalized log-likelihood)

log π(β, τ ;y,X,α) ∝ ℓ(β;y,X) +
K∑

k=1

Jk∑
j=1

[
log pjk(βjk; τ jk,αjk)

]
,

where pjk(·) are priors, τ jk (smoothing) variances and αjk fixed hyper
parameters.

Advanced Bayesian Methods – 2024 1 / 26

Priors pjk(·)
For simple linear effects Xjkβjk: pjk(βjk) ∝ const.

For the smooth terms:

pjk(βjk; τ jk,αjk) ∝ dβjk
(βjk| τ jk;αβjk

) · dτ jk(τ jk|ατ jk).

Using a basis function approach a common choice is

dβjk
(βjk| τ jk,αβjk

) ∝ |Pjk(τ jk)|
1
2 exp

(
−1

2
β⊤
jkPjk(τ jk)βjk

)
.

Precision matrix Pjk(τ jk) derived from prespecified penalty matrices
αβjk

= {K1jk, . . . ,KLjk}.

The variances parameters τ jk are equivalent to the inverse smoothing
parameters in a frequentist approach.

Advanced Bayesian Methods – 2024 2 / 26

Estimation

Bayesian point estimates of parameters are obtained by:
1 Maximization of the log-posterior for posterior mode estimation.
2 Solving high dimensional integrals, e.g., for posterior mean or median

estimation.

Problems 1 and 2 are commonly solved by computer intensive iterative
algorithms of the following type:

(β[t+1], τ [t+1]) = U(β[t], τ [t];y,X,α).

Log−posterior

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

β1

β 2

 0.02

 0.02

 0.02

 0.02
 0.04

 0.06

 0.08

 0.1 0.12

 0.14

 0.16
 0.18

 0.2

 0
.2

2

−1 0 1 2 3 4

−
1

1
2

3
4

β1
β 2 D

ensity

Advanced Bayesian Methods – 2024 3 / 26

Efficient Updating (1)

Typically the number of different observations x(1) < x(2) < · · · < x(m) in a design
matrix X is much smaller than the total number n of observations, i.e., m≪ n.
For sorted observations xi:

• Index vector ind with ind[i] ∈ {1, . . . ,m}, i.e., if xi = x(s) then ind[i] = s.

• Decompose the design matrix in X = DPX̃ where

• X̃ is the m× L reduced design matrix for the different and sorted
observations x(1), . . . , x(m), i.e., X̃[s, l] = Xl(xs), s = 1, . . . ,m, l = 1, . . . , L,

• P is a n× L permutation matrix, which reverts the sorting, i.e.,
P[i, s] = I(ind[i] = s).

• D is a diagonal matrix, e.g., for varying coefficient models or D = I for
simple additive terms.

• For the vector of function evaluations we obtain f = Xβ = DPX̃β.

Advanced Bayesian Methods – 2024 4 / 26

Efficient Updating (1)

Using the permutation, we get

X⊤
jkWkkXjk = X̃⊤

jkP
⊤
jkD

⊤
jkWkkDjkPjkX̃jk = X̃⊤

jkW̃X̃jk,

where
W̃ = P⊤

jkD
⊤
jkWkkDjkPjk = diag(w̃1, . . . , w̃mjk)

and the “reduced” weights w̃s, are given by

w̃s =
∑

i : ind[i]=s

z2
i Wkk[i, i].

The weights w̃s can be computed by first initializing w̃s = 0 followed by a simple
loop:

For i = 1, . . . ,n add z2
i Wkk[i, i] to w̃ind[i].

Advanced Bayesian Methods – 2024 5 / 26

Efficient Updating (1)

For X⊤
jkWkk(zk − η

(t)
k,−j) we obtain

X⊤
jkWkkr = X̃⊤

jkP
⊤
jkD

⊤
jkWkkr = X̃⊤

jk r̃,

with partial residuals r = zk − η
(t)
k,−j.

The “reduced” partial residuals yield a mjk × 1 vector r̃ = (r̃1, . . . , r̃mjk)
⊤ given by

r̃s =
∑

i : ind[i]=s

zi Wkk[i, i] ri.

The r̃s are computed by first initializing r̃s = 0 followed by the loop:

For i = 1, . . . ,n add ziWkk[i, i] ri to r̃ind[i].

Advanced Bayesian Methods – 2024 6 / 26

Efficient Updating (1)

Example using the IndiaNutrition data set.
R> dim(IndiaNutrition)

[1] 25134 13

R> X <- smoothCon(s(mage, bs = "ps", k = 22),
+ IndiaNutrition, NULL)[[1]]$X
R> dim(X)

[1] 25134 22

R> i <- match.index(X)
R> tX <- X[i$nodups,]
R> dim(tX)

[1] 26 22

R> print(object.size(X), units = "Mb")

4.2 Mb

R> print(object.size(tX), units = "Kb")

4.7 Kb

Advanced Bayesian Methods – 2024 7 / 26

Sparsity

B-spline design matrix:

Xjk =

0.496 0.504 0 0 0 0

0.153 0.747 0.1 0 0 0

0.006 0.597 0.397 0 0 0

0 0.221 0.723 0.056 0 0

0 0.025 0.673 0.303 0 0

0 0 0.303 0.673 0.025 0

0 0 0.056 0.723 0.221 0

0 0 0 0.397 0.597 0.006

0 0 0 0.1 0.747 0.153

0 0 0 0 0.504 0.496

Advanced Bayesian Methods – 2024 8 / 26

Sparsity

B-spline penalty matrix:

Kjk =

0.25 −0.25 0 0 0 0

−0.25 0.5 −0.25 0 0 0

0 −0.25 0.5 −0.25 0 0

0 0 −0.25 0.5 −0.25 0

0 0 0 −0.25 0.5 −0.25

0 0 0 0 −0.25 0.25

Advanced Bayesian Methods – 2024 9 / 26

Sparsity

Markov random fields (MRF) design matrix:

Xjk =

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

Advanced Bayesian Methods – 2024 10 / 26

Efficient Updating (2)

Products X̃⊤
jkW̃X̃jk and X̃⊤

jk r̃ are stored in sparse matrix format.

Nonzero entries are stored in a vector C (nx × 1). E.g., the t-th entry C[t]
corresponds to

C[t] =

mjk∑
s=1

w̃sX̃jk[s, r]X̃jk[s, l],

hence, most products are zero. Store the nonzero products in h1, the nonzero
index s in h2 and the position of the first element in h3. Computation only
requires

C[t] =

h3[t+1]−1∑
s=h3[t]

w̃h2[s]h1[s].

Similarly for X̃⊤
jk r̃, etc.

Advanced Bayesian Methods – 2024 11 / 26

Efficient Updating (2)

Example using the IndiaNutrition data set.
R> H <- sparse.matrix.index(tX)
R> print(head(H))

[,1] [,2] [,3] [,4]
[1,] 4 5 6 7
[2,] 3 4 5 6
[3,] 2 3 4 5
[4,] 9 10 11 12
[5,] 4 5 6 7
[6,] 5 6 7 8

R> print(nrow(X) * ncol(X))

[1] 552948

R> print(nrow(tX) * ncol(tX))

[1] 572

R> print(nrow(H) * ncol(H))

[1] 104

R> print(object.size(H), units = "Kb")

0.6 Kb

Advanced Bayesian Methods – 2024 12 / 26

Scaleable Distributional Learning

Consider the following updating scheme

β
[t+1]
k = Uk(β

[t]
k ; ·) = β

[t]
k −Hkk

(
β
[t]
k

)−1
s
(
β
[t]
k

)
.

Assuming model terms that can be written as a matrix product of a design
matrix and coefficients we obtain an iteratively weighted least squares scheme
given by

β
[t+1]
jk = Ujk(β

[t]
jk ; ·) = (X⊤

jkWkkXjk + Gjk(τ jk))
−1X⊤

jkWkk(zk − η
[t+1]
k,−j),

with working observations zk = η
[t]
k + W

−1 [t]
kk u

[t]
k , working weights W

−1 [t]
kk and

score vector u
[t]
k .

Advanced Bayesian Methods – 2024 13 / 26

Scaleable Distributional Learning

Instead of using all observations of the data, we only use a randomly chosen
subset denoted by the subindex [s] in one updating step

β
[t+1]
jk = ν · (X⊤

[s],jkW[s],kkX[s],jk + Gjk(τ jk))
−1X⊤

[s],jkW[s],kk(z[s],k − η
[t+1]
[s],k,−j) +

(1 − ν) · β[t]
jk ,

where ν is a weight parameter which specifies how much the parameters at
iteration t + 1 are influenced by parameters of the previous iteration t.

Use flat file format for each Xjk, i.e., only batch [s] is in memory. This way, we
can estimate models with really large datasets!

Advanced Bayesian Methods – 2024 14 / 26

Scaleable Distributional Learning

Mimics a second order stochastic gradient descent (SGD) algorithm

β
[t+1]
jk = β

[t]
jk + ν · (βjk,[s] − β

[t]
jk) = β

[t]
jk + ν · δ[t]jk ,

and δ
[t]
jk is composed from first and second order derivative information with

δ
[t]
jk = βjk,[s] − β

[t]
jk

=

[
β
[t]
jk −H[s],kk

(
β
[t]
jk

)−1
s[s]

(
β
[t]
jk

)]
− β

[t]
jk

= −H[s],kk

(
β
[t]
jk

)−1
s[s]

(
β
[t]
jk

)
Hence, the updating step length is adaptive.

Advanced Bayesian Methods – 2024 15 / 26

Scaleable Distributional Learning

The idea is to select τ jk using a stepwise algorithm which is based on an
"out-of-sample" criterion, i.e., the criterion C(·) is evaluated on another batch
denoted by [s̃], C[s̃](·) respectively, i.e.

τ
[t+1]
ljk ← arg min

τ⋆ljk∈Iljk
C[s̃](Ujk(β

[t]
jk , τ

⋆
ljk; ·)),

where Iljk is a search interval for τ
[t+1]
ljk , e.g.,

Iljk = [τ
[t]
ljk · 10−1, τ

[t]
ljk · 10].

Advanced Bayesian Methods – 2024 16 / 26

Scaleable Distributional Learning

Some interesting features:

1 Set, e.g., ν = 0.1, convergence after visiting m batches [s].

2 Only update if "out-of-sample" log-likelihood is increased.

3 Boosting for variable selection: Update only fjk(·) with greatest
contribution in "out-of-sample" log-likelihood.

4 Bagging: If ν = 1, each update is so to say a "sample". Convergence

similar to MCMC algorithms, i.e., if β
[t+1]
jk start fluctuating around a certain

level.

5 Slice sample τljk under C[s̃](·), much faster!

Advanced Bayesian Methods – 2024 17 / 26

Application

• Project aiming to better explain the problems of childhood malnutrition in
low- and middle-income countries.

• Contribute to monitoring of the Sustainable Development Goals (SGD).

• We compiled a brand new data set using DHS data.

• Data on global conflicts, topography and environmental data from satellite
observations (NDVI), temperature and precipitation data from ERA5
(ECMWF).

• Data from 1990–2019 with n > 3M observations.

Advanced Bayesian Methods – 2024 18 / 26

Application

Advanced Bayesian Methods – 2024 19 / 26

Application

Advanced Bayesian Methods – 2024 19 / 26

Application

Advanced Bayesian Methods – 2024 20 / 26

Application

Example: Search distribution.

Define the batchsize.
R> bs <- 2000

Generate batches.
R> batch_ids <- lapply(1:200, function(...) {
+ sample(1:nrow(d), size = bs, replace = FALSE)
+ })

Estimate model.
R> b <- bamlss(y ~ 1, data = d, family = JSU,
+ sampler = FALSE, optimizer = opt_bbfitp, slice = 10, aic = TRUE, K = 2,
+ batch_ids = batch_ids)

Compute log-likelihood.
R> logLik(b, newdata = nd)

Advanced Bayesian Methods – 2024 21 / 26

Application

Advanced Bayesian Methods – 2024 22 / 26

Application

Example: Boosting flavour with ff data frame.

Set up a model formula.
R> f <- list(
+ stunting ~ s(cage) + s(bord) + s(hhs) + s(x, y) + ...,
+ ~ s(cage) + s(bord) + s(hhs) + s(x, y) + ...
+)

Estimate model.
R> b <- bamlss(f, data = dff, family = JSU,
+ sampler = FALSE, optimizer = opt_bbfit,
+ batch_ids = batch_ids, select = TRUE, aic = TRUE, always = FALSE,
+ eps_loglik = 0.001, K = 2, overwrite = TRUE, delete = FALSE,
+ ff_name = ff_name)

Plot results.
R> contribplot(b)

Advanced Bayesian Methods – 2024 23 / 26

Application

Advanced Bayesian Methods – 2024 24 / 26

Application

Example: Bagging type flavour with slice sampling.

Extract formula.
R> nf <- new_formula(b)

Estimate model using ff processed data.
R> m <- bamlss(nf, data = dff, family = JSU,
+ sampler = FALSE, optimizer = opt_bbfitp,
+ batch_ids = batch_ids, aic = TRUE, slice = TRUE,
+ ff_name = ff_name)

Afterwards, all extractor functions provided by bamlss can be used, e.g.,
summary(), predict(), plot(), etc.

Advanced Bayesian Methods – 2024 25 / 26

Application

R> plot(m, which = "samples")

Advanced Bayesian Methods – 2024 26 / 26

	Big Data
	Efficient Updating
	Scaleable Distributional Learning
	Application

