logLik.bamlss <- function(object, ..., optimizer (= FALSE, samples = FALSE).

{
call <- match.call()
call <- call[!(names(Call) %in% c("optimizer", “Samples“H]
m <- as.character(call) [-1L]
object <- list(object,
mstop <- object$mstop
if (any (names (object) !
i <- names(object) =
object <- object[i]
m <~ m[i]

}
object <- object[mn != "mstop"]

Advanced Bayesian Methods:
Theory and Applications in R

Big Data and Variable Selection

Nikolaus Umlauf
https://nikum.org/abm.html

https://nikum.org/abm.html

Estimation

The main building block of regression model algorithms is the probability density
function d,(y|01, ..., k).

Estimation typically requires to evaluate the log-likelihood
n
E(,B,y,X) - Zlog dy(yi;gl(xi;/gl)u ey GK(X,';,BK)),
i=1

with X = (Xl7 - ,XK).
The log-posterior (frequentist penalized log-likelihood)
K Jk

log m(8,T;y, X, @) < £(B; ¥, X) + > > [log p (B Tk,)]

k=1 j=1

where pj(-) are priors, Tj (smoothing) variances and aj fixed hyper
parameters.

Advanced Bayesian Methods - 2024 1/26

Priors pi(+)
For simple linear effects Xy B pj(Bjc) o const.
For the smooth terms:
Pik(Bjk: Tik: aj) o< dg, (Bic| Tjk: g,) - dr (Tik| eery,).

Using a basis function approach a common choice is
1 1 T
A (Bl Tis ;) o< [Pw(Tjic) |2 exp { =5 BicPix(7ic) By | -

Precision matrix Pj(7jx) derived from prespecified penalty matrices
aﬁjk = {Kljk7 ey Kij}.

The variances parameters 7 are equivalent to the inverse smoothing
parameters in a frequentist approach.

Advanced Bayesian Methods - 2024 2/26

Estimation

Bayesian point estimates of parameters are obtained by:
@ Maximization of the log-posterior for posterior mode estimation.
® Solving high dimensional integrals, e.g., for posterior mean or median
estimation.

Problems 1 and 2 are commonly solved by computer intensive iterative
algorithms of the following type:

(B £y — y(gld #l y X,).

o

2.0

B2
1 2 3 4
|

1.0

0.0
-1

Advanced Bayesian Methods - 2024 3/26

Efficient Updating (1)

Typically the number of different observations x(;) < x2) < -+ < X() in a design
matrix X is much smaller than the total number n of observations, i.e., m < n.
For sorted observations x;:

* Index vector ind with ind[i] € {1,...,m}, i.e., if X; = X(5) then ind[]] = s.
e Decompose the design matrix in X = DPX where

* X is the m x L reduced design matrix for the different and sorted
observations x(y), ..., X(m), i.€., X[s, /] = Xi(xs),s=1,....,m,I=1,...,L,

® Pisan x L permutation matrix, which reverts the sorting, i.e.,
P[i,s] = I(ind[i] = s).

® D is a diagonal matrix, e.g., for varying coefficient models or D = I for
simple additive terms.

* For the vector of function evaluations we obtain f = X3 = DPXS3.

Advanced Bayesian Methods - 2024 4/26

Efficient Updating (1)
Using the permutation, we get
X Wi Xjie = X P D Wik Dji P Xy = X3 WK,

where
W = Pj—lr<DjTI|;Wk/<DjkP/‘k = diag(|7v1, cee ijk)
and the “reduced” weights ws, are given by
Ws= Y ZWlii].
irind[i]=s
The weights ws can be computed by first initializing ws = 0 followed by a simple
loop:

Fori=1,...,n add z?W[i,i] to Winag-

Advanced Bayesian Methods - 2024 5/26

Efficient Updating (1)
For XjIWkk(zk - n,(:)_j) we obtain
Xi Wir = X P D Wigr = X, F,

with partial residuals r = z; — 77,(:)71-.

The “reduced” partial residuals yield a mj x 1 vector r = (rq, ... ,T’mjk)T given by
Fs = Z Zj Wkk[i,i] ri.
i:ind[i]=s

The s are computed by first initializing 7s = 0 followed by the loop:

Fori= 1,....n add Z,'Wkk[i, I] ri to Find[i]'

Advanced Bayesian Methods - 2024 6/26

Efficient Updating (1)

Example using the IndiaNutrition data set.

R> dim(IndiaNutrition)
[1] 25134 13

R> X <- smoothCon(s(mage, bs = "ps", k = 22),
+ IndiaNutrition, NULL) [[1]]1$X
R> dim(X)

[1] 25134 22

R> i <- match.index(X)
R> tX <- X[i$nodups,]
R> dim(tX)

(1] 26 22

R> print(object.size(X), units = "Mb")
4.2 Mb

R> print(object.size(tX), units = "Kb")
4.7 Kb

Advanced Bayesian Methods - 2024

7126

Sparsity

B-spline design matrix:

0.496 0.504
0.153 0.747
0.006 0.597
0 0.221
0 0.025
0 0
0 0
0 0
0 0
0 0

0
0.1
0.397
0.723
0.673
0.303
0.056
0
0

0

0
0.056
0.303
0.673
0.723
0.397

0.1
0

o O O o

0
0.025
0.221
0.597
0.747
0.504

o O ©O © o o

0.006
0.153
0.496

Advanced Bayesian Methods - 2024

8/26

Sparsity

B-spline penalty matrix:

0.25 -0.25 0 0 0 0
-0.25 05 -0.25 0 0 0
0 —-0.25 05 -0.25 0 0
Kjk =
0 0 —-0.25 0.5 -0.25 0
0 0 0 -0.25 05 -0.25
0 0 0 0 —-0.25 0.25

Advanced Bayesian Methods - 2024 9/26

Sparsity

Markov random fields (MRF) design matrix:

0 01 000 O0OO0OOP O

O O O O O+ O O O
o O O O O o -+ O O
O O O O O O O +H O
O O O O O O O o -
- O O O O O O O O
O O O 0O+ O O O o
O O O - O O O O O
o O O O O O O o o
O O +H O O O O O O
O - O O O O O O O
I
3

10/26

Advanced Bayesian Methods - 2024

Efficient Updating (2)

Products X WX and X, ¥ are stored in sparse matrix format.

Nonzero entries are stored in a vector C (ny x 1). E.g., the t-th entry CJ[t]

corresponds to
mjk

Clt] = WsXyes, r1Xs, 1],
s=1
hence, most products are zero. Store the nonzero products in hy, the nonzero
index s in hy and the position of the first element in h3. Computation only

requires
hs[t+1]-1

Citl= > inyghals]:

5=h3[t]

. . NTN
Similarly for X F, etc.

Advanced Bayesian Methods - 2024 11/26

Efficient Updating (2)

Example using the IndiaNutrition data set.
R> H <- sparse.matrix.index(tX)
R> print(head(H))
[,11 [,21 [,3] [,4]
[1,] 4 5 6 7

[2,] 3 4 5 6
[3,1 2 3 4 5
[4,] 9 10 11 12
[5,] 4 5 6 7
[6,] 5 6 7 8

R> print(nrow(X) * ncol(X))

[1] 552948

R> print(nrow(tX) * ncol(tX))
[1] 572

R> print(nrow(H) * ncol(H))
[1] 104

R> print(object.size(H), units = "Kb")
0.6 Kb

Advanced Bayesian Methods - 2024 12/26

Scaleable Distributional Learning

Consider the following updating scheme

,6,[:+1] _ Uk(ﬁ/[:];) _ /6/[:] — Hik (/BI[:]>_1 s (,6/[:]> .

Assuming model terms that can be written as a matrix product of a design
matrix and coefficients we obtain an iteratively weighted least squares scheme
given by

B = U (BY:) = G WX + Gje (1)) T X Wi (zic — mp 7)),

with working observations z;, = 77/[<t] + W,:kl [t]u,[f], working weights W,:kl M and

[t]
score vector u..

Advanced Bayesian Methods - 2024 13/26

Scaleable Distributional Learning

Instead of using all observations of the data, we only use a randomly chosen
subset denoted by the subindex [s] in one updating step

t+1 T -1y T t+1
B = v (X Wisp e Xisp ik + G (Tik)) X5 e Wi e (Z(s] & —n}sfk],,,-)Jr

(1-v)- B,
where v is a weight parameter which specifies how much the parameters at
iteration t + 1 are influenced by parameters of the previous iteration t.

Use flat file format for each Xy, i.e., only batch [s] is in memory. This way, we
can estimate models with really large datasets!

Advanced Bayesian Methods - 2024 14/26

Scaleable Distributional Learning

Mimics a second order stochastic gradient descent (SGD) algorithm
BN =Bl + v (B — B = BR +v -8,

and éj[f(] is composed from first and second order derivative information with
O = Biis — B

[BJ[E — Hig) (5[E> Ss] (ﬂ)} ﬁ[t]

= —Hg <5,[;t<]>_ Ss] (ﬁ[t])

Hence, the updating step length is adaptive.

Advanced Bayesian Methods - 2024 15/26

Scaleable Distributional Learning

The idea is to select T using a stepwise algorithm which is based on an
"out-of-sample" criterion, i.e., the criterion C(+) is evaluated on another batch
denoted by [8], Cig(-) respectively, i.e.

T,j[t,:rl] < arg min C[g](Ujk(ﬁ,[/i]uT/fk?));
T € Lijk
[t+1]

where Zj is a search interval for Tk » €9

Ly = [le[tk] . 10_1,7',1[-2] -10].

Advanced Bayesian Methods - 2024 16/26

Scaleable Distributional Learning

Some interesting features:
O Set, e.g., v = 0.1, convergence after visiting m batches [s].
® Only update if "out-of-sample" log-likelihood is increased.

© Boosting for variable selection: Update only fj(-) with greatest
contribution in "out-of-sample" log-likelihood.

@O Bagging: If v = 1, each update is so to say a "sample". Convergence
similar to MCMC algorithms, i.e., if ,B[tH start fluctuating around a certain
level.

O Slice sample 7 under C[g]('), much faster!

Advanced Bayesian Methods - 2024 17/26

Application

® Project aiming to better explain the problems of childhood malnutrition in
low- and middle-income countries.

e Contribute to monitoring of the Sustainable Development Goals (SGD).
® We compiled a brand new data set using DHS data.

® Data on global conflicts, topography and environmental data from satellite
observations (NDVI), temperature and precipitation data from ERA5
(ECMWE).

® Data from 1990-2019 with n > 3M observations.

Advanced Bayesian Methods - 2024 18/26

Application

Latitude [deg]

Longitude [deg]

Advanced Bayesian Methods - 2024 19/26

Application

Latitude [deg]

Longitude [deg]

Advanced Bayesian Methods - 2024 19/26

Application

o] —
[oN
S] —
- 1 -
7]
[
8 2
o
o
O_ —
© | | T T | | |
-6 -4 -2 0 2 4 6
stunting

Advanced Bayesian Methods - 2024 20/26

Application

Example: Search distribution.

Define the batchsize.
R> bs <- 2000

Generate batches.

R> batch_ids <- lapply(1:200, function(...) {
+ sample(1l:nrow(d), size = bs, replace = F

+ P

Estimate model.
R> b <- bamlss(y ~ 1, data = d, family = JSU,

+ sampler = FALSE, optimizer = opt_bbfitp, slice = 10, aic = TRUE, K = 2,

+ batch_ids = batch_ids)

Compute log-likelihood.
R> logLik(b, newdata = nd)

Advanced Bayesian Methods - 2024

21/26

Application

_ — NO -401.23
i\ GA -398.39
S /NN BCPE -394.25
s | i , EGB2 -394.2
> / A\ JSU -393.78
7] i
o o | / |
= 7 \
g | = ‘ { [T
° I I I I I I I
-6 -4 -2 0 2 4 6

stunting

Advanced Bayesian Methods - 2024 22/26

Application

Example: Boosting flavour with ff data frame.

Set up a model formula.
R> f <- list(

+ stunting ~ s(cage) + s(bord) + s(hhs) + s(x, y) + ...,
+ ~ s(cage) + s(bord) + s(hhs) + s(x, y) + ...
+)

Estimate model.

R> b <- bamlss(f, data = dff, family = JSU,

+ sampler = FALSE, optimizer = opt_bbfit,

+ batch_ids = batch_ids, select = TRUE, aic = TRUE, always = FALSE,
+ eps_loglik = 0.001, K = 2, overwrite = TRUE, delete = FALSE,

+ ff_name = ff_name)

Plot results.
R> contribplot(b)

Advanced Bayesian Methods - 2024

23/26

Application

o -
o _|
e}
—
C
(<]
= o
S S _|
a8 o
= -
=
c
o
o
=
O o
> Q
o o —
|
o — =

I T I T I
0 100 200 300 400

Iteration

mu.s.s(cage)

mu.s.ti
mu.s.s
mu.s.s
mu.s.s

(X,
x,
(a
(h

y,byear)
y)

i)
hs)

LogLik contribution

100

20 40 60 80

0

—

T I T T I
0 100 200 300 400

Iteration

sigma.s.s(x,y)

sigma.s.s(cage)
sigma.s.s(fyvacn)

sigma.s.ti(x,y,byear

sigma.s.s(gf)

Advanced Bayesian Methods - 2024

24/26

Application

Example: Bagging type flavour with slice sampling.

Extract formula.
R> nf <- new_formula(b)

Estimate model using ff processed data.

R> m <- bamlss(nf, data = dff, family = JSU,

+ sampler = FALSE, optimizer = opt_bbfitp,

+ batch_ids = batch_ids, aic = TRUE, slice = TRUE,
+ ff_name = ff_name)

Afterwards, all extractor functions provided by bamlss can be used, e.g.,
summary (), predict (), plot (), etc.

Advanced Bayesian Methods - 2024 25/26

Application

R> plot(m, which = "samples")

Trace of mu.s.s(bord).b1 ACF of mu.s.s(bord).b1
A 0
o c 7
S
n % <]
3 2 31
o | o
R e e e M B °
0 200 600 1000 0 5 10 15 20 25 30
Iterations Lag
Trace of mu.s.s(bord).b2 ACF of mu.s.s(bord).b2
o
i @
o 5 7
5 7] <
o -4 S
e 3
Al S I B B
0 200 600 1000 0 5 10 15 20 25 30
Iterations Lag

Advanced Bayesian Methods - 2024 26/26

	Big Data
	Efficient Updating
	Scaleable Distributional Learning
	Application

