logLik.bamlss <- function(object, ..., optimizer (= FALSE, samples = FALSE).

{
call <- match.call()
call <- call[!(names(Call) %in% c("optimizer", “Samples“H]
m <- as.character(call) [-1L]
object <- list(object,
mstop <- object$mstop
if (any (names (object) !
i <- names(object) =
object <- object[i]
m <~ m[i]

}
object <- object[mn != "mstop"]
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Challenges in Distributional Regression

® Conceptually, distributional regression is very appealing and intuitive, but it
comes with a number of specific challenges:

® Interpretation of the estimated effects more difficult due to link functions and
multi-parameter setup.

® Model choice and checking to avoid model miss-specification.
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lllustration for Simulated Log-Normal Data
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Goals of Model Checking and Predictive Evaluation

® Finding a suitable response distribution.
® Determining the predictor (covariates and appropriate modelling variant).
® Checking model adequacy in general.
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Quantile Residuals

® For a continuous random variable Y with cumulative distribution function F,
the probabilitiy integral transform yields

F(Y) ~U(0,1)
or
®~H(F(Y)) ~ N(0,1).

® For a correctly specified distributional regression model, we should
therefore have

uj = 1 (F(yi6(x:))) ~ N(0,1)

and the quantile residuals u; can, e.g., be visualized in a quantile-quantile
plot.

® For discrete or multivariate data, appropriate generalisations are needed.
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Information Criteria
® |nformation criteria such as AIC or BIC can be used in the distributional
regression context, e.qg.
AIC = —=2/(%) + 2df(%)

® The model fit is evaluated based on the (negative) log-likelihood —2/(%).
® The degrees of freedom df(%) of the model have to take the impact of the
regularisation penalty into account.
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Proper Scoring Rules

® |n a distributional setting, typical predictive measures such as the mean
squared error of prediction or the mean absolute error of prediction are
usually not the most adequate choice.

® Proper scoring rules provide a framework for evaluating predictive
distributions rather than point predictions.

® Underlying theory ensures that proper scores encourage the analyst to
honestly report their uncertainty in terms of the predictive distribution.

® The cross-validated log-likelihood is the most commonly used proper score.
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Scoring Rules for Real-Valued Outcomes

* Evaluate a predictive density f(y) based on an observed outcome yy.

® Spherical score
f(yo)

SPS(f(y),y0) = —W.

Logarithmic score
LS(f(y),yo0) = — log(f(yo))-

Continuously ranked probability score

CRPS(f(y), yo) = / [F(t) — 1y 00y ()] .

Note: All scores are negatively oriented, i.e. smaller values indicate a better
agreement between the predictive distribution and the observed values.
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Model Checking in bamlss

Example:

Load the Munich rent data.

R> library("bamlss")
R> library("gamlss.dist")
R> data("rent", package = "gamlss.data")

Estimate models.

R> f <- R ~ s(F1) + s(A) + loc + H

R> bl <- bamlss(f, data = rent, family = NO)
R> b2 <- bamlss(f, data = rent, family = GA)
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Model Checking in bamlss

Diagnostic plots.

R> par(mfrow = c(1, 3))
R> plot(bl, which = 3:5, spar

Histogram and density
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Model Checking in bamlss

Diagnostic plots.

R> par(mfrow = c(1, 3))
R> plot(b2, which = 3:5, spar

Histogram and density
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Model Checking in bamlss

Log-likelihood and AIC.

R>

logLik(b1)

'log Lik.' -14038.36 (df=11.39594)

R>

logLik(b2)

'"log Lik.' -13847.51 (df=11.94265)

R>

bl
b2

R>

b1
b2

R>

bl
b2

AIC(b1, b2)
daf AIC
11.39594 28099.51
11.94265 27718.90
DIC(b1, b2)
DIC pd
28088.11 11.39594
27706.96 11.94265
WAIC(b1, b2)
WAIC1  WAIC2 pl p2
28089.75 28089.93 13.03652 13.12346
27707.25 27707.54 12.23709 12.38185
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Model Checking in bamlss

Scoring rules.

R> library("scoringRules")

R> pl <- predict(bl, type = "parameter")

R> p2 <- predict(b2, type = "parameter")

R> mean(crps_norm(rent$R, mean = pl$mu, sd = pl$sigma))

[1] 165.4988

Using bamlss infrastructures.

R> s1 <- bamlss:::.CRPS(rent$R, as.data.frame(pl), family(bl))
R> s2 <- bamlss:::.CRPS(rent$R, as.data.frame(p2), family(b2))
R> mean(s1)

[1] 165.4988
R> mean(s2)
[1] 161.1239
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Model Checking in bamlss

Quantile residuals by hand. First predict parameters.
R> par <- predict(bl, newdata = rent, type = "parameter")

Calculate probabilities using the $p () function.
R> u <- family(b1)$p(rent$R, par)
Compute standard normal quantiles, aka quantile residuals.

R> e <- gnorm(u)
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Model Checking in bamlss

Q-Q plot.

R> qgnorm(e); qqline(e)

Normal Q-Q Plot
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