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Linear Models

• The work horse of statistical modelling and analysis is the linear model
where

yi = x⊤
i β = β0 + β1xi1 + . . .+ βkxik + εi, εi

i.i.d.∼ N(0, σ2).

• The parameters βj can be related to the expected change in the response
associated with differences in xj.
⇒ Parameters have a specific meaning and purpose.

• Statistical inference is facilitated by the distributional assumptions on the
error terms.

• However, in many practical situations the linear model is not flexible
enough and/or assumptions may be questionable.
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Nonlinear Effects

• Common practice if the linearity of the effect of xj is questionable: Include
low-order polynomials, e.g. replace xjβj by

xjβj + x2
j βj+1 + x3

j βj+2.

• Imposes strong assumptions on the form of the effect and is not very
flexible.

• Ideally, the form of an effect should be left unspecified and should be
determined by the data (under mild, qualitative assumptions).

• Additive model:

yi = β0 + f1(xi1) + . . .+ fk(xik) + εi, εi
i.i.d.∼ N(0, σ2).

• We will use penalized splines to represent the effects fj(xij).
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Clustered Data

• For longitudinal data (yit,xit), i = 1 . . . ,n, t = 1, . . . , T, a classical model of
the form

yit = x⊤
it β + εit

may be questionable for a number of reasons:

• Unobserved heterogeneity due to individual-specific, unobserved confounders
that have not been included in the model,

• Dependence between observations on one individual, or

• Individual-specific regression coefficients.
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Clustered Data

• Similarly applies to other grouping structures (families, geographical
regions, school classes, . . . )

• Random effects models are then often considered, e.g. random intercepts

yit = γ0i + x⊤
it β + εit

with γi0
i.i.d.∼ N(0, τ2).

• More complex models can also have individual-specific random slopes or
other additional structures.
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Spatial Dependence

• For spatial regression data (y(s), (s)), one may similarly question whether
linear models take unobserved spatial heterogeneity and/or dependence
into account.

• Include spatially correlated random effects, leading to

y(s) = γ(s) + x(s)⊤β + ε(s)

with γ(s) being an appropriately specified spatial stochastic process.
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Bayesian Additive Regression

• Bayesian additive regression provides a unifying framework for dealing with
the challenges discussed so far.

• The model also supports other effect types, e.g., varying coefficients or
interaction surfaces.

• The models can be conveniently represented in a hierarchical fashion that
enables us to benefit from the flexibility of Bayesian inference.

• Tomorrow, we will discuss Bayesian distributional regression that allows us
to overcome the normality assumption for the error terms.
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Example

Car insurance data from two insurance companies in Belgium:

• Sample of approximately 160.000 policyholders.

• Aims: Separate risk analyses for claim size and claim frequency to predict
risk premium from covariates.

• Variables of primary interest: Claim size amounti or claim frequency
nclaimsi of policyholders.
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Example

Variable Description

agec Vehicle’s age.

ageph Policyholder’s age.

power Vehicle’s horsepower.

bm Bonus-malus score.

region, NAME_4 District in Belgium.

lon, lat Longitude/Latitude coordinates of districts.

fleet Vehicle belongs to a fleet ("yes", "no").

sex Gender of the policy holder ("male", "female").

coverage Possible other guarantees subscribed, 1 = TPL only,
2 = limited material damage or theft in addition to TPL,
3 = comprehensive coverage in addition to TPL.
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Example

• Generalised linear models:

• Gaussian model for log-costs log(amount):

log(amount) ∼ N(x⊤β, σ2).

• Poisson model for frequencies nclaimsi:

nclaims ∼ Po(exp(x⊤β)).

• Linear predictors formed as a linear combination of (possibly transformed)
covariates:

η = x⊤β = β0 + x1β1 + . . .+ xpβp.
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Example

• Subject-matter knowledge:

• Young and old drivers have a higher claims expenditure. This hints at a
quadratic instead of a linear age effect, but the precise form is unknown.

⇒ Replace the parametric effect with a nonparametric effect f(ageph).

• Male and female drivers have a different claims expenditure. This hints at an
interaction between age and gender, but the effect should be allowed to vary
with age.

⇒ Instead of a parametric model of the form β1ageph+ β2sex+ β3ageph · sex
consider a model of the form f1(ageph) + f2(ageph) · sex.
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Example

• Drivers in rural areas cause less accidents with a higher average claim amount
while drivers in urban areas cause more but smaller claims. The effect may
change smoothly between rural and urban areas such that modeling based on
a rural vs. urban dummy is too simplistic.

⇒ Include a spatial function fspat(NAME_4) based on the region NAME_4 a driver
is living in.
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Example

• Model specifications:
• Gaussian model for log-costs log(amount):

log(amount) ∼ N(η, σ2)

with

η = f1(agec) + f2(ageph) + f3(bm) + f4(power) + fspat(NAME_4) + x⊤β.

• Poisson model for frequencies nclaimsi:

nclaims ∼ Po(exp(η))

with

η = f1(agec) + f2(ageph) · sex+ f3(bm) + f4(power) + fspat(NAME_4) + x⊤β.
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Scatterplot Smoothing

• Start from scatterplot smoothing

yi = f(zi) + εi, εi
i.i.d.∼ N(0, σ2)

where f(z) should be inferred based on observations (zi, yi), i = 1, . . . ,n, for
a continuous covariate z and response y.

• Common approach: Approximate f(z) by a low-order polynomial

f(zi) = γ0 + γ1zi + . . .+ γlz
l
i

since any smooth function f(·) can be approximated arbitrarily accurately if
the degree l is chosen large enough.
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Scatterplot Smoothing

• In statistics, the problem of estimating the coefficients γ0, . . . , γl limits the
applicability of high polynomial degrees:
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Scatterplot Smoothing

R> data("mcycle", package = "MASS")
R> par(mar = c(4, 4, 0, 0))
R> plot(mcycle)
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Polynom Splines

• If a linear fit is too simple we could use a polynomial model

acceli = γ0 + γ1timesi + . . .+ γltimes
l
i.

• The parameters can be estimated by ordinary least squares.

• Note that we write γ instead of β to better distinguish between simple linear
and nonlinear effects here.

• The design matrix has the following form

Z =


1 times1 . . . timesl1
...

...
...

...

1 timesn . . . timesln


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Polynom Splines

• The columns of Z are also called basis functions Bj(z), j = 0, . . . , l. In this
case a polynomial basis.

• With sorted z they have a nice visual representation.
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Polynom Splines

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

z

B
1(

z)
γ 0

=
2.

5

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
8

−
6

−
4

−
2

0

z

B
2(

z)
γ 1

=
−

10
.5

z

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

z

B
3(

z)
γ 2

=
16

.8
z2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

z

B
4(

z)
γ 3

=
2.

2z
3

0.0 0.2 0.4 0.6 0.8 1.0
−

10
−

8
−

6
−

4
−

2
0

z

B
5(

z)
γ 4

=
−

10
.8

z4

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

z

f(z
)

Illustration of how f(z) is represented in terms of Bj(z)γj.
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Polynom Splines

Effect of increasing the degree l of the polynomial.

10 20 30 40 50

−
10

0
−

50
0

50

times

ac
ce

l

l = 1
l = 2
l = 6
l = 9

Advanced Bayesian Methods – 2024 19 / 53



Polynom Splines

Polynomial boundary effects.
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Polynom Splines

Effect of increasing the degree l of the polynomial.
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Polynom Splines

Problems:

• High degree needed for decent curve fit.

• Higher degree polynomials are numerically unstable.

• Basis funtions are global.

• Unexpected wiggles.

• Round-off problems with γ̂ = (Z⊤Z)−1Z⊤y.

• Partial remedy: center and normalize z.

• Better use orthogonal polynomials instead, see also function poly().
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Polynom Splines

Divide the range of z in equidistant intervals with boundaries κ (knots) and fit
polynomial models within each section.
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Polynom Splines

• The fitted functions don’t form a nice overall smooth function, see the jumps
at the boundaries.

• We need additional requirements to construct a smooth functional form.

A function f is called polynomial spline of degree l ≥ 0 with knots
min(z) = κ1 < . . . < κm = max(z) (the interval boundaries), if it satisfies

1 f(z) is (l− 1) times continuously differentiable,

2 f(z) is a polynom of degree l in each interval [κj, κj+1).

Every spline may be represented by a linear combination of basis functions, i.e.

f(zi) = γ1 · B1(zi) + γ2 · B2(zi) + . . .+ γl+m−1 · Bl+m−1(zi).

Advanced Bayesian Methods – 2024 24 / 53



Polynom Splines

Polynom splines with truncated powers

• Regression model

yi = γ1 + γ2zi + . . .+ γl+1z
l
i +

m−1∑
j=2

γl+j(zi − κj)
l
+ + εi.

where

(zi − κj)
l
+ =

{
(zi − κj)

l zi ≥ κj

0 else.

• Corresponding basis functions

B1(zi) = 1, B2(zi) = zi, . . . , Bl+1(zi) = zli,

Bl+2(zi) = (zi − κ2)
l
+, . . . , Bk(zi) = (zi − κm−1)

l
+.
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Polynom Splines

• Model using basis function representation

yi = f(zi) + εi =
k∑

j=1

γjBj(zi) + εi.

• The corresponding design matrix is

Z =


B1(z1) . . . Bk(z1)

...
...

B1(zn) . . . Bk(zn)

 =


1 z1 . . . zl1 (z1 − κ2)

l
+ . . . (z1 − κm−1)

l
+

...
...

1 zn . . . zln (zn − κ2)
l
+ . . . (zn − κm−1)

l
+

 ,

• In matrix notation

y = Zγ + ε and γ̂ = (Z⊤Z)−1Z⊤y.
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Polynom Splines
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Polynom Splines
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Penalized Regression

• Although most of the automatic knot selection procedures have exhibited
good performance, they are usually quite complicated and computational
intensive.

• We therefore seek a simpler method for flexible spline-based regression.

• As mentioned before, the roughness of a fit is due to there being too many
knots in the model.

• Another way to overcome this problem is to retain all of the knots but to
constrain their influence.

• The hope is that this will result in a less variable fit.
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Penalized Regression

Penalized Regression with TP-Splines:

• Consider the truncated polynomial model

f(zi) = γ1 + γ2zi + . . .+ γl+1z
l
i +

m−1∑
j=2

γl+j(zi − κj)
l
+.

• The wiggliness of the fit is mainly the result of too large variability of the
coefficients of the truncated bases.

• Constraints on the γl+j that might rectify this situation are
1 max|γl+j| < C,
2
∑

|γl+j| < C, and
3
∑

γ2
l+j < C.

• Each of these will lead to a smoother fit, however, the third constraint is
much easier to implement.
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Penalized Regression

• Define the ((m− 2) + l)× ((m− 2) + l) matrix

K =

(
0l×l 0l×(m−2)

0(m−2)×l I(m−2)×(m−2)

)
,

then our minimization problem can be written as

min||y − Zγ||2 subject to γ⊤Kγ < C.

• Using a Lagrange multiplier argument, it can be shown that this is
equivalent to choosing γ to minimize

||y − Zγ||2 + λγ⊤Kγ

for some λ ≥ 0.
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Penalized Regression

• The solution is then given by

γ̂ =
(
Z⊤Z + λK

)−1
Z⊤y.

• The fitted values for a penalized spline regression are

ŷ = Z
(
Z⊤Z + λK

)−1
Z⊤y = Sλy,

where Sλ is called smoother matrix.
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Penalized Regression
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P-Splines

• Truncated power bases can sometimes lead to numerical instability when
there is a large number of knots and the smoothing parameter is small.

• Therefore, in practical use it is advisable to work with equivalent bases with
more stable numerical properties.

• The most common choice is the B-spline basis.

• B-spline basis can represent cubic splines (and also higher or lower orders).

• The advantage of B-splines is that they are strictly local – each basis
function is only non-zero over l+ 1 adjacent knots.
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P-Splines

• To define a B-spline with k basis functions we need to set up m+ l+ 1 knots

κ1 < κ2 < . . . < κm+l+1,

where the interval over which the spline is to be evaluated is [κl+1, κk], i.e.,
the first and the last l knot locations are essentially arbitrary.

• Every basis function overlaps with 2l neighboring basis functions and is
positive over l+ 2 neighboring knots.

• The B-spline is l− 1 times continuously differentiable.

• A lth order B-spline is then represented by

f(zi) =
k∑

j=1

Blj(zi)γj.
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P-Splines

• The B-spline basis functions are most conveniently defined recursively as
follows:

Blj(zi) =
zi − κj
κj+l − κj

Bl−1
j (zi) +

κj+l+1 − zi
κj+l+1 − κj+1

Bl−1
j+1(zi),

• where

B0
j (zi) =

{
1 κj ≤ zi < κj+1,

0 else.

• A common choice is a cubic spline basis with l = 3.
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P-Splines

R> ## Evaluate a B-spline design matrix
R> ## first, define the B-spline basis function
R> ## recursively.
R> bsbasis <- function(z, knots, j, degree) {
+ if(degree == 0)
+ B <- 1 * (knots[j] <= z & z < knots[j + 1])
+ if(degree > 0) {
+ b1 <- (z - knots[j]) / (knots[j + degree] - knots[j])
+ b2 <- (knots[j + degree + 1] - z) /
+ (knots[j + degree + 1] - knots[j + 1])
+ B <- b1 * bsbasis(z, knots, j, degree - 1) +
+ b2 * bsbasis(z, knots, j + 1, degree - 1)
+ }
+ B[is.na(B)] <- 0
+ return(B)
+ }
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P-Splines

R> ## Now, compute the design matrix for all knots.
R> bsDesign <- function(z, degree = 3, knots = NULL) {
+ ## Compute knots.
+ if(is.null(knots))
+ knots <- 40
+ if(length(knots) < 2) {
+ step <- (max(z) - min(z)) / (knots - 1)
+ knots <- seq(min(z) - degree * step,
+ max(z) + degree * step, by = step)
+ }
+
+ ## Evaluate each basis function
+ ## and return the full design matrix B.
+ B <- NULL
+ for(j in 1:(length(knots) - degree - 1))
+ B <- cbind(B, bsbasis(z, knots, j, degree))
+ return(B)
+ }
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P-Splines
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P-Splines
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P-Splines
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P-Splines

• With B-spline basis functions a penalty on the regression coefficients is not
obvious, since we do not divide in a parametric and non-parametric part.

• Since we want an overall smooth function we could use the following penalty

λ

∫
(f ′′(z))2dz.

• For B-splines we can construct simpler equivalent penalty terms

||y − Zγ||2 + λγ⊤Kγ

with

λγ⊤Kγ =
k∑

j=k+1

(∆dγj)
2.
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P-Splines

• ∆d is the dth order difference which is defined recursively

∆1γj = γj − γj−1

∆2γj = ∆1∆1γj = ∆1γj −∆1γj−1 = γj − 2γj−1 + γj−2

...

∆dγj = ∆d−1γj −∆d−1γj−1.

• The first order difference matrix is then given by

D1 =


−1 1

−1 1
. . .

. . .

−1 1

 with D1γ =


γ2 − γ1

...

γk − γk−1

 .
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P-Splines

• The difference matrices can be computed recursively with

Dd = D1Dd−1.

• Now, the resulting penalty matrix K is

K = D⊤
k Dk.

R> ## Penalty matrix based on difference matrices.
R> penalty <- function(order = 2, k = 10) {
+ D <- diag(k)
+ for(i in 1:order)
+ D <- diff(D)
+ K <- crossprod(D, D)
+ return(K)
+ }
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P-Splines

R> penalty(order = 1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 -1 0 0 0 0 0 0 0 0
[2,] -1 2 -1 0 0 0 0 0 0 0
[3,] 0 -1 2 -1 0 0 0 0 0 0
[4,] 0 0 -1 2 -1 0 0 0 0 0
[5,] 0 0 0 -1 2 -1 0 0 0 0
[6,] 0 0 0 0 -1 2 -1 0 0 0
[7,] 0 0 0 0 0 -1 2 -1 0 0
[8,] 0 0 0 0 0 0 -1 2 -1 0
[9,] 0 0 0 0 0 0 0 -1 2 -1
[10,] 0 0 0 0 0 0 0 0 -1 1
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P-Splines

R> penalty(order = 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 -2 1 0 0 0 0 0 0 0
[2,] -2 5 -4 1 0 0 0 0 0 0
[3,] 1 -4 6 -4 1 0 0 0 0 0
[4,] 0 1 -4 6 -4 1 0 0 0 0
[5,] 0 0 1 -4 6 -4 1 0 0 0
[6,] 0 0 0 1 -4 6 -4 1 0 0
[7,] 0 0 0 0 1 -4 6 -4 1 0
[8,] 0 0 0 0 0 1 -4 6 -4 1
[9,] 0 0 0 0 0 0 1 -4 5 -2
[10,] 0 0 0 0 0 0 0 1 -2 1
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P-Splines
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Optimum  λ = 1e−07
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Bayesian P-splines

Penalized splines can also be derived in a Bayesian framework

In particular, this allows us to employ Bayesian approaches for the estimation of
P-splines including the smoothing parameter.

Lets start with the observation model

yi =
d∑
j=1

γjBj(zi) + εi εi ∼ N(0, σ2),

with B-spline basis functions Bj.

Instead of imposing a penalty, we will now develop an appropriate prior
assumption for γ that enforces a smooth function estimation.
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Bayesian P-splines

Priors of regression coefficients

• The stochastic analogue for the difference penalty are random walks of
order k (RWk).

• A random walk of first order (RW1) is defined by

γj = γj−1 + uj, uj ∼ N(0, τ2), j = 2, . . . ,d,

or equivalently

γj − γj−1 = uj, uj ∼ N(0, τ2), j = 2, . . . ,d,

so that a connection to the first order difference penalty is recognizable.

• We have to make further assumptions for the prior of the starting value γ1

and a noninformative prior distribution, p(γ1) ∝ const will be our standard
option.
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Bayesian P-splines

• When considering the conditional distributions defined by a RW1, we have

γj|γj−1, . . . , γ1 ∼ N(γj−1, τ
2).

• The RW1 has a special dependence structure such that the conditional
distribution of γj given all previous values is only dependent on the value
lagged by one, i.e. γj−1.

• Therefore, the RW1 has the (first order) Markov property.

• According to this formulation, the conditional expectation of γj is simply the
lagged value γj−1 such that we obtain a constant trend for the expected
value.
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Bayesian P-splines
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Bayesian P-splines

• The larger the variance, the larger the possible deviation from the
conditional expectation.

• A constant value of all B-spline coefficients leads to a constant estimate for
the function f(z). This corresponds to the case that the variance of the RW1
is (almost) zero, since only very little deviation between γj and γj−1 is
allowed in this situation resulting in a (near) constant trend for the
sequence γ1, . . . , γd.

• In contrast, when having a large variance τ2, neighboring coefficients are
able to deviate from each other, which in turn leads to a rough estimated
function.

• It follows that we can interpret the variance parameter τ2 as related to an
inverse smoothing parameter.
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Bayesian P-splines

• The joint multivariate prior distribution for γ is then given by

p(γ|τ2) =
d∏
j=1

p(γj|γj−1, . . . , γ1) = p(γ1)
d∏
j=2

p(γj|γj−1)

∝
d∏
j=2

1√
2πτ2

exp
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2
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