logLik.bamlss <- function(object, ..., optimizer (= FALSE, samples = FALSE).

{
call <- match.call()
call <- call[!(names(Call) %in% c("optimizer", “Samples“H]
m <- as.character(call) [-1L]
object <- list(object,
mstop <- object$mstop
if (any (names (object) !
i <- names(object) =
object <- object[i]
m <~ m[i]

}
object <- object[mn != "mstop"]
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Linear Models

® The work horse of statistical modelling and analysis is the linear model
where

jid.
Yi=x B =00+ Bixn+...+ Bxik +ei, & =~ N(O,5?).

® The parameters f3; can be related to the expected change in the response
associated with differences in x;.
= Parameters have a specific meaning and purpose.

e Statistical inference is facilitated by the distributional assumptions on the
error terms.

® However, in many practical situations the linear model is not flexible
enough and/or assumptions may be questionable.
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Nonlinear Effects

® Common practice if the linearity of the effect of x; is questionable: Include
low-order polynomials, e.g. replace x;53; by
X + X7 Bj1 + Xj35j+2~

® Imposes strong assumptions on the form of the effect and is not very
flexible.

® |deally, the form of an effect should be left unspecified and should be
determined by the data (under mild, qualitative assumptions).

® Additive model:
yi= o + fl(X,'l) + ...+ fk(X,'k) +e&i, € /{_\(5/ N(O,Uz).

® We will use penalized splines to represent the effects fj(x;).
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Clustered Data

® For longitudinal data (yjt, X;t),i=1...,n,t=1,...,T, a classical model of
the form

-
Yit = Xt B + €it
may be questionable for a number of reasons:

® Unobserved heterogeneity due to individual-specific, unobserved confounders
that have not been included in the model,

® Dependence between observations on one individual, or

® Individual-specific regression coefficients.
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Clustered Data

® Similarly applies to other grouping structures (families, geographical
regions, school classes, ...)

® Random effects models are then often considered, e.g. random intercepts
_ T
Yit = Yoi + Xit B + €it
. iid. 2
with Yio ~ N(O,T )

® More complex models can also have individual-specific random slopes or
other additional structures.
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Spatial Dependence

® For spatial regression data (y(s), (s)), one may similarly question whether
linear models take unobserved spatial heterogeneity and/or dependence
into account.

® Include spatially correlated random effects, leading to
y(5) =(s) +x(s) B+ (s)

with ~(s) being an appropriately specified spatial stochastic process.
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Bayesian Additive Regression

® Bayesian additive regression provides a unifying framework for dealing with
the challenges discussed so far.

® The model also supports other effect types, e.g., varying coefficients or
interaction surfaces.

® The models can be conveniently represented in a hierarchical fashion that
enables us to benefit from the flexibility of Bayesian inference.

® Tomorrow, we will discuss Bayesian distributional regression that allows us
to overcome the normality assumption for the error terms.
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Example

Car insurance data from two insurance companies in Belgium:
® Sample of approximately 160.000 policyholders.

® Aims: Separate risk analyses for claim size and claim frequency to predict
risk premium from covariates.

® Variables of primary interest: Claim size amount; or claim frequency
nclaims; of policyholders.
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Example

Variable Description

agec Vehicle’s age.

ageph Policyholder’s age.

power Vehicle’s horsepower.

bm Bonus-malus score.

region, NAME_4 District in Belgium.

lon, lat Longitude/Latitude coordinates of districts.

fleet Vehicle belongs to a fleet ("yes", "no").

sex Gender of the policy holder ("male", "female").
coverage Possible other guarantees subscribed, 1 = TPL only,

2 = limited material damage or theft in addition to TPL,
3 = comprehensive coverage in addition to TPL.
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Example

® Generalised linear models:

® Gaussian model for log-costs log(amount):
log(amount) ~ N(x ' 3,0?).
® Poisson model for frequencies nclaims;:

nclaims ~ Po(exp(x' 3)).

® Linear predictors formed as a linear combination of (possibly transformed)
covariates:

n=x"B=PBo+x181+ ...+ XpBp.
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Example

® Subject-matter knowledge:

® Young and old drivers have a higher claims expenditure. This hints at a
quadratic instead of a linear age effect, but the precise form is unknown.

= Replace the parametric effect with a nonparametric effect f(ageph).

® Male and female drivers have a different claims expenditure. This hints at an
interaction between age and gender, but the effect should be allowed to vary
with age.

= Instead of a parametric model of the form ;ageph + f.sex + [f3ageph - sex
consider a model of the form fi(ageph) + f2(ageph) - sex.
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Example

® Drivers in rural areas cause less accidents with a higher average claim amount
while drivers in urban areas cause more but smaller claims. The effect may
change smoothly between rural and urban areas such that modeling based on
a rural vs. urban dummy is too simplistic.

= Include a spatial function fsp,:(NAME_4) based on the region NAME_4 a driver
is living in.
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Example

® Model specifications:
® Gaussian model for log-costs log(amount):

log(amount) ~ N(n,?)
with
n = fi(agec) + f(ageph) + f3(bm) + f4(power) + fopar(NAME_4) + x ' 3.
® Poisson model for frequencies nclaims;:
nclaims ~ Po(exp(7))
with

n = fi(agec) + f2(ageph) - sex + f3(bm) + fa(power) + fspat(NAME_4) + x'g.
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Scatterplot Smoothing

e Start from scatterplot smoothing
yi=f(z)+e, & N(O,02)

where f(z) should be inferred based on observations (z;,y;), i =1,...,n, for
a continuous covariate z and response y.

e Common approach: Approximate f(z) by a low-order polynomial
f(z) =0 +nzZi+ ...+ 72

since any smooth function f(-) can be approximated arbitrarily accurately if
the degree / is chosen large enough.
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Scatterplot Smoothing

® |n statistics, the problem of estimating the coefficients 7o, ...,y limits the
applicability of high polynomial degrees:
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Scatterplot Smoothing

R> data("mcycle", package = "MASS")
R> par(mar = c(4, 4, 0, 0))
R> plot(mcycle)
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Polynom Splines

e |f a linear fit is too simple we could use a polynomial model
accel; =y + yr1times; + ... + ’Y/timesf.

® The parameters can be estimated by ordinary least squares.

® Note that we write v instead of (§ to better distinguish between simple linear
and nonlinear effects here.

® The design matrix has the following form

1 times; ... times)

1 times, ... times,
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Polynom Splines

® The columns of Z are also called basis functions Bj(z), j = 0, ..., /. In this
case a polynomial basis.

® With sorted z they have a nice visual representation.

<
-

o
=)

B((z)
0.0
1

-0.5
I

-1.0

-1.0 -05 0.0 0.5 1.0

Advanced Bayesian Methods - 2024 17/53



Polynom Splines
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Polynom Splines

Effect of increasing the degree / of the polynomial.
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Polynom Splines

Polynomial boundary effects.
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Polynom Splines

Effect of increasing the degree / of the polynomial.
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Polynom Splines

Problems:
® High degree needed for decent curve fit.
® Higher degree polynomials are numerically unstable.
® Basis funtions are global.
e Unexpected wiggles.
* Round-off problems with 4 = (27Z)"'ZTy.
® Partial remedy: center and normalize z.
® Better use orthogonal polynomials instead, see also function poly ().
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Polynom Splines

Divide the range of z in equidistant intervals with boundaries « (knots) and fit
polynomial models within each section.
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Polynom Splines

® The fitted functions don’t form a nice overall smooth function, see the jumps
at the boundaries.

® We need additional requirements to construct a smooth functional form.

A function f is called polynomial spline of degree I > 0 with knots
min(z) = k1 < ... < km = max(z) (the interval boundaries), if it satisfies

@ f(z2) is (I — 1) times continuously differentiable,
® f(z) is a polynom of degree / in each interval [k}, kjt1).
Every spline may be represented by a linear combination of basis functions, i.e.

f(zi) = v1-B1(zi) + 72 - B2(2i)) + - .. + Yiem-1 - Bi+m—1(2i)-
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Polynom Splines

Polynom splines with truncated powers
® Regression model

m—1

Yi=m+mzi+... + ’YI+1Z,I' + Z ’)’/.H'(Z,' — /ij)l_,_ + &j.
j=2

where

@ j)+ 0 else.

/ {(Zi—fﬁj)' Zj > Kj

® Corresponding basis functions

B]_(Z,') = 1, Bz(Z,') =2Zj, ... , B/+1(Z,') = Z,I-,

Bii2(zi) = (zi — Hz)l+, oy Bi(z)=(z - /‘imfl)l-y-
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Polynom Splines

® Model using basis function representation

yl_le +ei= Z’Yj ZI + €.

® The corresponding design matrix is

Bl(zl) . Bk(Zl) 1 Z1 e le (Z]_ — Iiz)g,

Bi(zn) ... Bk(zn) 1 z, ... Z, (zn—f-az)’+

® |n matrix notation

y=2Zy+eand y=(2'2)'z"y.

(21 — km-1)}

(20 — Km—1)s
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Polynom Splines
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Polynom Splines
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Penalized Regression

e Although most of the automatic knot selection procedures have exhibited
good performance, they are usually quite complicated and computational
intensive.

® We therefore seek a simpler method for flexible spline-based regression.

®* As mentioned before, the roughness of a fit is due to there being too many
knots in the model.

® Another way to overcome this problem is to retain all of the knots but to
constrain their influence.

® The hope is that this will result in a less variable fit.
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Penalized Regression

Penalized Regression with TP-Splines:
® Consider the truncated polynomial model

m—1
f(z) =71+ 722+ ... + Y412 + Z (= Ryl
j=2

® The wiggliness of the fit is mainly the result of too large variability of the
coefficients of the truncated bases.
¢ Constraints on the 74, that might rectify this situation are
© max|y.;| < C,
O > |yl <C and
© Z’y,z“ <C.
® Each of these will lead to a smoother fit, however, the third constraint is
much easier to implement.
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Penalized Regression

*® Define the ((m — 2) + /) x ((m — 2) 4+ /) matrix

K — 0/ 0I><(m72)
O(m—2)xs Mm-2)x(m-2)/)
then our minimization problem can be written as

min|ly — Zv||* subjectto v Ky < C.

® Using a Lagrange multiplier argument, it can be shown that this is
equivalent to choosing v to minimize

ly — Zv|]> + My 'Ky

for some \ > 0.
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Penalized Regression
® The solution is then given by
5= (sz + /\K) Ty
® The fitted values for a penalized spline regression are
y=2 (sz + )\K>_1 Zy—s,y,

where S is called smoother matrix.
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Penalized Regression
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P-Splines

® Truncated power bases can sometimes lead to numerical instability when
there is a large number of knots and the smoothing parameter is small.

® Therefore, in practical use it is advisable to work with equivalent bases with
more stable numerical properties.

® The most common choice is the B-spline basis.
® B-spline basis can represent cubic splines (and also higher or lower orders).

® The advantage of B-splines is that they are strictly local - each basis
function is only non-zero over / 4+ 1 adjacent knots.
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P-Splines
® To define a B-spline with k basis functions we need to set up m +/+ 1 knots
R < Ry <...< Km-+/1+1,

where the interval over which the spline is to be evaluated is [k/;1, kk], i.€.,
the first and the last / knot locations are essentially arbitrary.

® Every basis function overlaps with 2/ neighboring basis functions and is
positive over | + 2 neighboring knots.

® The B-spline is | — 1 times continuously differentiable.
® A [th order B-spline is then represented by

k

f(zi) =Y Bj(zi)y-

j=1
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P-Splines

® The B-spline basis functions are most conveniently defined recursively as

follows:
! i /I—1 +1+1 i /-1
B(z)) = ——L B/ (z) + ——" Bl 1(z),
Rjtl — Ky Rjti+1 — Fj+l
® where
1 ki <z <kKkj
0 j = £ j+15

0 else.

® A common choice is a cubic spline basis with | = 3.
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P-Splines

R> ## Evaluate a B-spline design matrix
R> ## first, define the B-spline basis function
R> ## recursively.
R> bsbasis <- function(z, knots, j, degree) {
if (degree == 0)
B <- 1 * (knots[j] <= z & z < knots[j + 1])
if (degree > 0) {
bl <- (z - knots[j]) / (knots[j + degreel - knots[jl)
b2 <- (knots[j + degree + 1] - z) /
(knots[j + degree + 1] - knots[j + 1])
B <- bl * bsbasis(z, knots, j, degree - 1) +
b2 * bsbasis(z, knots, j + 1, degree - 1)
}
Blis.na(B)] <- 0

+
+
+
+
+
+
+
+
+
+
+ return(B)
+
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P-Splines

R> ## Now, compute the design matrix for all knots.
R> bsDesign <- function(z, degree = 3, knots = NULL) {
## Compute knots.
if (is.null(knots))

knots <- 40
if (length(knots) < 2) {

step <- (max(z) - min(z)) / (knots - 1)

knots <- seq(min(z) - degree * step,

max(z) + degree * step, by = step)

¥

## Evaluate each basis function
## and return the full design matrix B.
B <- NULL
for(j in 1:(length(knots) - degree - 1))
B <- cbind(B, bsbasis(z, knots, j, degree))
return(B)

+ 4+ + A+ F o+
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P-Splines
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P-Splines
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P-Splines
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P-Splines

® \With B-spline basis functions a penalty on the regression coefficients is not
obvious, since we do not divide in a parametric and non-parametric part.

® Since we want an overall smooth function we could use the following penalty

)\/(f”(z))zdz.
® For B-splines we can construct simpler equivalent penalty terms

ly — Zv]|* + My Ky

with
k

My Ky = Z (A%))?.
j=k+1
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P-Splines

e A% s the dth order difference which is defined recursively

Aty = 5=
APy = AMAMy = Aly - Ay =y =291+ 2
Ad’}/j _ Ad*l,yj . Adil’ijl.

® The first order difference matrix is then given by

-1 1

-1 1

Y2—M
D]_ = . . with D]_“)/ = :

Tk — VYk—-1
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P-Splines
® The difference matrices can be computed recursively with
Dy =D1Dy 1.
® Now, the resulting penalty matrix K is

K=D/D,.

R> ## Penalty matrix based on difference matrices.
R> penalty <- function(order = 2, k = 10) {

+ D <- diag(k)

+ for(i in 1:order)

+ D <- diff(D)

+ K <- crossprod(D, D)
+ return (K)

+ }
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P-Splines

R> penalty(order = 1)
[,11 [,21 (,3] [,4] [,8] [,e] [,71 [,8] [,9] [,10]

[1,] 1 -1 0 0 0 0 0 0 0 0
[2,1 -1 2 -1 0 0 0 0 0 0 0
[3,] 0o -1 2 -1 0 0 0 0 0 0
[4,] 0 0o -1 2 -1 0 0 0 0 0
[5,] 0 0 0o -1 2 -1 0 0 0 0
[6,] 0 0 0 0o -1 2 -1 0 0 0
[7,] 0 0 0 0 0o -1 2 -1 0 0
[8,] 0 0 0 0 0 0o -1 2 -1 0
[9,] 0 0 0 0 0 0 0o -1 2 -1
[10,1] 0 0 0 0 0 0 0 0o -1 1
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P-Splines

R> penalty(order = 2)
[,11 [,21 (,3] [,4] [,8] [,e] [,71 [,8] [,9] [,10]

[1,] 1 -2 1 0 0 0 0 0 0 0
[2,1 -2 5 -4 1 0 0 0 0 0 0
[3,] 1 -4 6 -4 1 0 0 0 0 0
[4,] 0 1 -4 6 -4 1 0 0 0 0
[5,] 0 0 1 -4 6 -4 1 0 0 0
[6,] 0 0 0 1 -4 6 -4 1 0 0
[7,] 0 0 0 0 1 -4 6 -4 1 0
[8,] 0 0 0 0 0 1 -4 6 -4 1
[9,] 0 0 0 0 0 0 1 -4 5 -2
[10,1] 0 0 0 0 0 0 0 1 -2 1
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Bayesian P-splines

Penalized splines can also be derived in a Bayesian framework

In particular, this allows us to employ Bayesian approaches for the estimation of
P-splines including the smoothing parameter.

Lets start with the observation model
d
yi=) @) +e & ~N(0,07),
j=1
with B-spline basis functions B;.

Instead of imposing a penalty, we will now develop an appropriate prior
assumption for « that enforces a smooth function estimation.
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Bayesian P-splines

Priors of regression coefficients

® The stochastic analogue for the difference penalty are random walks of
order k (RWk).

® A random walk of first order (RW1) is defined by
v =-1+ U, U ~N(0,7%), j=2,...,d,
or equivalently
Y — V-1 =Uj, U NN(O,TZ), j=2,...,d,

so that a connection to the first order difference penalty is recognizable.

® We have to make further assumptions for the prior of the starting value v,
and a noninformative prior distribution, p(+1) o const will be our standard
option.
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Bayesian P-splines
® When considering the conditional distributions defined by a RW1, we have

'-}lj'h/j—lv BN e N(’}/j_]_,Tz).

® The RW1 has a special dependence structure such that the conditional
distribution of 4; given all previous values is only dependent on the value
lagged by one, i.e. ;1.

® Therefore, the RW1 has the (first order) Markov property.

® According to this formulation, the conditional expectation of ~; is simply the
lagged value 7;_; such that we obtain a constant trend for the expected
value.

Advanced Bayesian Methods - 2024 50/53



Bayesian P-splines
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Bayesian P-splines

® The larger the variance, the larger the possible deviation from the
conditional expectation.

® A constant value of all B-spline coefficients leads to a constant estimate for
the function f(z). This corresponds to the case that the variance of the RW1
is (almost) zero, since only very little deviation between ~; and ~;_1 is
allowed in this situation resulting in a (near) constant trend for the
sequence Y1,...,7q-

* In contrast, when having a large variance 72, neighboring coefficients are
able to deviate from each other, which in turn leads to a rough estimated
function.

e |t follows that we can interpret the variance parameter 72 as related to an
inverse smoothing parameter.

Advanced Bayesian Methods - 2024 52/53



Bayesian P-splines

® The joint multivariate prior distribution for = is then given by

d d
p(vI7?) = [[pGily-1.---m) =p(n) [ [ p(4li-1
j=1 j=2

d
1 1 2
X EWEXP <—27_2(7j_%'1)>

1 1
T (2rr2)@d-DJ2 &P 752 Z
1

1
- (zmz)w—n/zexf’< 2727 "”)*
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