logLik.bamlss <- function(object, ..., optimizer (= FALSE, samples = FALSE).

{

call <- match.call()

call <- call[!(names(Call) %in% c("optimizer", “Samples“H]
m <- as.character(call) [-1L]

object <- list(object, ...)

mstop <- object$mstop
if (any (names (object) !=

i <- names(object) =

object <- object[i]

m <~ m[i]

}
object <- object[mn != "mstop"]
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Posterior Summaries

® While the ultimate outcome of Bayesian inference is the posterior, this is
often compressed into posterior summaries, in particular

® posterior point estimates and
® posterior measures of uncertainty.

® Typical point estimates:

® posterior mean (estimated by averages of samples),
® posterior median (estimated by empirical median),
® posterior mode (difficult to determine from samples).

® Typical measures of uncertainty:

® posterior variance / standard deviation (estimated by empirical analogues),
® posterior quantiles.
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Credible Intervals

* A pointwise Bayesian credible interval [0 jow, 0s,upp] fOr @ scalar parameter 6
is characterized by the posterior coverage probability

P(es,low <0s < Hs,upp‘y) >1-a«

where 1 — o denotes the desired coverage level.

® A simultaneous band for multiple parameters {6s,s € S} should have

P(es,low < 95 < Hs,uppas € S‘y) >1l-«
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Credible Intervals

® Symmetric and highest posterior density credible intervals:

Symmetric Credible Interval HPD Credible Interval

10 15 20 25
10 15 20 25

pdly)
6l y)

0.0 05
0.0 05

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Credible Intervals

In R:
R> library("HDInterval")

Simulate beta distributed data (as in the density plot before).

R> x <- rbeta(1000, shapel = 2, shape2 = 5)

HDI intervals for samples and the beta distribution.

R> i <- hdi(x, credMass = 0.8)
R> j <- hdi(gbeta, credMass = 0.8, shapel = 2, shape2 = 5)

R> print(rbind(i, j))

lower upper
i 0.06738695 0.4619858
j 0.05126051 0.4483045
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Bayesian Tests

® To test the hypotheses
Hoieeeo VS. H1:0§é@0
we can compute the posterior probabilities

po =P(0 € ©0ly) and p1 =P(0 ¢ Ogly).

® The decision can then be based on the ratio

P1
Po

that measures the evidence in favor of H; as compared to Hy.

Advanced Bayesian Methods - 2024 5/16



Bayesian Tests

® H, and Hg are therefore treated symmetrically in the Bayesian context.

e Unfortunately, point hypotheses can not meaningfully be tested in the
Bayesian paradigm since then

P(6 = 00ly) = 0.
¢ |nstead of formally testing hypothesis, the decision between Hy and H; is
often made based on model choice procedures in the Bayesian framework.

® As an alternative, one often considers a Bayesian credible interval for 8 and
evaluates whether 8¢ is contained in the credible interval or not.
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Bayesian Tests

In R:
R> library("bamlss")

Simulate some data.

R> set.seed(123)

R> n <- 1000

R> x1 <- rnorm(n)

R> x2 <- rnorm(n)

R>y <- 1.2 + 0.5 * x1 + rnorm(n, sd = 0.2)

Estimate linear model using MCMC.
R> b <- bamlss(y ~ x1 + x2)
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Bayesian Tests

95% Credible intervals.

R> confint(b, model = "mu", level = 0.95)

2.5% 97.5%
(Intercept) 1.183167435 1.20773499
x1 0.483302348 0.50753724
x2 -0.006737225 0.01728374
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Inference for Derived Quantities

® Goal: Conduct Bayesian inference for a derived quantity

n=9(0).
® Convenient feature of MCMC: If 9[1], . ,B[T] is a sample from the posterior of
0, g(61), ..., g(8!™) will be a sample from the posterior of the transformed

parameter.

® No restrictions on the transformation g(-) and no need to deal with
asymptotic considerations
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Inference for Derived Quantities

Example in R:

R>
R>
R>
R>
R>
R>
+

+

+

+

R>
R>
R>
R>
R>

nd <- data.frame("x1" = x1, "x2" = x2)

par <- predict(b, newdata = nd, type = "parameter", FUN = identity)
print (names (par))

print (dim(par$mu))

Probs <- NULL

for(i in 1:ncol(par$mu)) {
tpar <- list("mu" = par$mul, i], "sigma" = par$sigmal, i])
p <- 1 - family(b)$p(1, tpar) ## Same as 1 - pnorm(1l, ...).
Probs <- cbind(Probs, p)

}

Probs <- apply(Probs, 1, mean)

col <- rep(1, n)

col[Probs > 0.6] <- 2

par(mfrow = c(1, 2), mar = c(4, 4, 1, 1))
plot(xl, y, col = col)
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Inference for Derived Quantities

R> abline(h = 1, 1ty = 2)
R> plot(xl, Probs, col = col)
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Bayesian Information Criteria

® Bayesian information criterion (BIC)
BIC(M)) = —2£(6)) + log(n)df,

where df; is the number of parameters in model /.
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Bayesian Information Criteria

® Deviance information criterion (DIC)

DIC — D( ) + pdD|C

where

D(6) = ~2log(p(yl6)) = = > (61

denotes the model deviance and

.
pdpic = D(8) — D(0) = %Z o) ( Z a[t])

provides an estimate for the effective parameter count.
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Bayesian Information Criteria

® Widely applicable information criterion (WAIC)

=l

n
WAIC = 2 (Dwaic + Pwaic) With Dwaic = — Z log (
i=1

ip (yflé’[t]))

t=1

as the measure of model fit,

Pwaic = Z Var (log (p(il0)))

as the measure of model complexity, and the empirical variance

-
Var a —a
T 1; t
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Bayesian Information Criteria

Example in R:

R> library("bamlss")
R> data("cars")

Two models, simple linear and a polynomial model

R> ml <- bamlss(dist ~ speed, data = cars)
R> m2 <- bamlss(dist ~ poly(speed, 3), data = cars)
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Bayesian Information Criteria

Compute information criteria.

R> BIC(ml, m2)

df BIC
ml 3.077717 428.3615
m2 5.014228 434.6961
R> DIC(ml, m2)

DIC pd
ml 419.3991 3.077717
m2 420.0945 5.014228
R> WAIC(m1, m2)

WAIC1 WAIC2 pl p2
ml 419.4495 420.1763 3.128132 3.491537
m2 419.5214 420.6983 4.441135 5.029594
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