

Advanced Bayesian Methods: Theory and Applications in R

Principles of Bayesian Inference

Nikolaus Umlauf https://nikum.org/abm.html

Principles of Bayesian Inference

Aims of sections 1-4:

- Introduce the foundations of Bayesian inference and compare it to frequentist maximum likelihood.
- Motivate how Markov chain Monte Carlo (MCMC) simulations provide numerical access to the posterior distributions.
- Discuss practical aspects of working with MCMC simulations.

Bayes' Theorem

- Two central components of a Bayesian model formulation.
 - Observation model $p(\mathbf{y}|\theta)$, which describes how the data \mathbf{y} are generated for given model parameters θ .
 - Prior distribution p(heta) representing prior beliefs about the parameter vector heta
- Bayesian learning updates prior beliefs on θ based on information in the data \mathbf{y} using Bayes' theorem

$$p(\theta|\mathbf{y}) = rac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})} = rac{p(\mathbf{y}|\theta)p(\theta)}{\int p(\mathbf{y}|\theta)p(\theta)d\theta},$$

where $p(\mathbf{y})$ is the marginal density of the data.

- Data $y \stackrel{i.i.d.}{\sim} Be(\pi)$ with unknown success probability $\pi \in (0, 1)$.
- We consider n = 10 trials with one success (1) and nine failures (0).
- The likelihood is the product of each the probabilities of each individual Bernoulli trial

$$\mathcal{L}(\pi|\mathbf{y}) = \prod_{i=1}^{n} p(\pi|y_i) = \prod_{i=1}^{n} \pi^{y_i} (1-\pi)^{1-y_i} = \pi^{\sum_{i=1}^{n} y_i} (1-\pi)^{n-\sum_{i=1}^{n} y_i}.$$

• For the prior distribution of π , we use a Beta distribution with parameters a > 0 and b > 0:

$$\pi \sim \mathsf{Beta}(\pmb{a}, \pmb{b})$$

• The density function of the Beta distribution is:

$$p(\pi|a,b)=rac{\pi^{a-1}(1-\pi)^{b-1}}{B(a,b)}, ext{ where } B(a,b)=rac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

Here, $\Gamma(\cdot)$ is the Gamma function.

• The posterior distribution combines the likelihood function and the prior

$$egin{aligned} p(\pi|\mathbf{y}) &\propto & \mathcal{L}(\pi|\mathbf{y}) \cdot p(\pi|a,b) \ &= & \left(\prod_{i=1}^n \pi^{y_i} (1-\pi)^{1-y_i}
ight) \cdot \pi^{a-1} (1-\pi)^{b-1} \ &= & \pi^{\sum_{i=1}^n y_i + a - 1} (1-\pi)^{n - \sum_{i=1}^n y_i + b - 1} \end{aligned}$$

• Hence, this is the kernel of a Beta distribution. Therefore, the posterior distribution for π is:

$$\pi | \mathbf{y} \sim \mathsf{Beta}\left(a + \sum_{i=1}^n y_i, b + n - \sum_{i=1}^n y_i
ight).$$

• We can express the parameters of the posterior Beta distribution as:

$$\tilde{a} = a + \sum_{i=1}^{n} y_i, \ \tilde{b} = b + n - \sum_{i=1}^{n} y_i.$$

```
In R:
R > v < - c(1, rep(0, 9))
R> prior <- function(p, a, b, ...) {
+ p^{(a - 1)} * (1 - p)^{(b - 1)} / beta(a, b)
+ }
R> likelihood <- function(p, ...) {</pre>
     p^{(sum(y))} * (1 - p)^{(length(y) - sum(y))}
+
+ }
R> posterior <- function(p, a, b, nc = TRUE, ...) {</pre>
     if(nc) {
+
       a < -a + sum(y)
+
       b \le b + length(y) - sum(y)
+
       pv \leftarrow p^{(a - 1)} * (1 - p)^{(b - 1)} / beta(a. b)
+
     } else {
+
       pv <- likelihood(p) * prior(p, a, b)</pre>
+
     3
+
     return(pv)
+
+
```


Relation to Maximum Likelihood Estimation

• If the prior distribution is flat, i.e.

 $p(\theta) \propto \text{const},$

the posterior is proportional to the likelihood:

$$p(heta|\mathbf{y}) = rac{p(\mathbf{y}| heta)p(heta)}{p(\mathbf{y})} \propto p(\mathbf{y}| heta)p(heta) \propto p(\mathbf{y}| heta).$$

• Hence, the mode of the posterior coincides with the maximum likelihood estimate.

Relation to Maximum Likelihood Estimation

```
R> p <- seq(0, 1, length = 100)
R> par(mar = c(4, 4, 1, 1))
R> plot(likelihood(p), posterior(p, a = 1, b = 1))
R> abline(lm(posterior(p, a = 1, b = 1) ~ likelihood(p)))
```


Relation to Maximum Likelihood Estimation

In general,

- the likelihood is a central part of Bayes' theorem that quantifies the information coming from the data and
- the posterior forms a compromise between data (likelihood) and prior beliefs (prior).

Prior Beliefs and Prior Elicitation

- Main conceptual difference between likelihood-based and Bayesian inference: Coming up with a sensible prior distribution.
- The prior should reflect your prior beliefs about the parameter of interest.
- Very common practice:
 - Pick a mathematically convenient class of distributions for the prior and
 - only decide on the parameter of this prior distribution.
- For example, one can formulate belief statements such as

$$\mathsf{P}(c_1 \leq \theta \leq c_2) = 1 - \alpha,$$

where c_1 and c_2 are pre-specified constants from which the prior parameters are determined.

• It is also very common to run analyses for a variety of different priors to study prior sensitivity.

Prior Beliefs and Prior Elicitation

Example in R:

```
R > foo <- function(par, level = 0.9) {
     p <- pbeta(0.7, par[1], par[2]) - pbeta(0.5, par[1], par[2])</pre>
+
  (p - level)^2
+
  7
+
R> opt <- optim(c(1, 1), fn = foo, method = "L-BFGS-B", lower = 1, upper = 100)
R > a <- opt par[1]; b <- opt par[2]
R> print(a)
[1] 38,34065
R> print(b)
[1] 25.81303
R > p <- seq(0, 1, length = 200)
R > par(mar = c(4, 4, 1, 1))
R > plot(p, prior(p, a, b), type = "l", lwd = 2)
```

Prior Beliefs and Prior Elicitation

Noninformative Prior Specifications

• Flat priors

$f(heta) \propto {\sf const}$

are a popular choice to implement noninformative priors (no value of the parameter is favored a priori).

- Conceptual difficulties:
 - For non-bounded parameter spaces, flat priors are not actual probability distributions.
 - Flat priors are not invariant under transformations of the parameter of interest.

Noninformative Prior Specifications

- An alternative are reference priors for which the prior has the smallest possible influence on the posterior (i.e., it maximizes the Kullback-Leibler discrepancy between the prior and the posterior for given data).
- Another option is Jeffreys' invariant prior:

 $p(heta) \propto \sqrt{|F(heta)|}$

with expected Fisher information $F(\theta)$.

• For scalar parameters, Jeffreys' prior is equivalent to the reference prior approach.

Bernoulli Experiment: Likelihood and Log-Likelihood

- Consider a Bernoulli experiment where the outcome y is 1 (success) with probability θ and 0 (failure) with probability 1θ .
- The likelihood function for the parameter θ given the outcome y is:

$$p(y \mid \theta) = \theta^y (1 - \theta)^{1-y}.$$

• The log-likelihood function $\ell(\theta)$ is:

$$\ell(\theta) = \log p(y \mid \theta) = y \log \theta + (1 - y) \log(1 - \theta).$$

• Compute the first derivative of the log-likelihood function:

$$rac{\partial \ell(heta)}{\partial heta} = rac{{\mathsf y}}{ heta} - rac{{\mathsf 1}-{\mathsf y}}{{\mathsf 1}- heta}.$$

• Compute the second derivative of the log-likelihood function:

$$rac{\partial^2 \ell(heta)}{\partial heta^2} = -rac{ extsf{y}}{ heta^2} - rac{ extsf{1}- extsf{y}}{(extsf{1}- heta)^2}.$$

• The Fisher information $F(\theta)$ is the negative expected value of the second derivative:

$$F(\theta) = -\mathbb{E}\left[rac{\partial^2 \ell(\theta)}{\partial \theta^2}
ight].$$

• Substituting the second derivative:

$${ extsf{F}}(heta) = \mathbb{E}\left[rac{y}{ heta^2} + rac{1-y}{(1- heta)^2}
ight].$$

• Since *y* follows a Bernoulli distribution:

$$E[y] = \theta$$
 and $E[1-y] = 1 - \theta$,

SO

$$F(\theta) = \frac{\theta}{\theta^2} + \frac{1-\theta}{(1-\theta)^2} = \frac{1}{\theta} + \frac{1}{1-\theta} = \frac{1}{\theta(1-\theta)}.$$

• Jeffreys' prior is proportional to the square root of the Fisher information:

 $p(\theta) \propto \sqrt{F(\theta)}.$

• Therefore:

$$p(heta) \propto \sqrt{rac{1}{ heta(1- heta)}}.$$

• Simplifying:

$$p(heta) \propto rac{1}{\sqrt{ heta(1- heta)}} = heta^{0.5-1}(1- heta)^{0.5-1}.$$

 This is equivalent to the Beta(0.5, 0.5) distribution, which is a noninformative prior reflecting minimal prior knowledge about θ.

Example in R:

```
R> Jeffreys <- function(p) { dbeta(p, 0.5, 0.5) }
R> p <- seq(0, 1, length = 100)
R> par(mar = c(4, 4, 1, 1))
R> plot(p, Jeffreys(p), type = "l", lwd = 2)
```


Priors for the Success Probability

- The beta distribution is conjugate to the Bernoulli observation model, i.e., the posterior is then also a beta distribution with updated parameters.
- Elicit the hyperparameters a > 0 and b > 0 based on prior statements, e.g., the prior expectation, variance, quantiles, probabilities, etc.
- A flat prior is $\pi \sim U(0, 1)$, which is also a beta distribution with a = b = 1.
- Jeffreys' prior is a beta distribution with a = b = 0.5.

Priors for the Success Probability

- A typical discussion on Bayesian inference is that:
 - Frequentist inference assumes a true, fixed parameter value, whereas
 - *Bayesian inference* assumes the parameter to be a random variable.
- This is, in general, misleading since the prior is merely used to reflect prior (un)certainty about the parameter of interest.
- The underlying philosophical question is whether this can be done in a sensible way . . .

Posterior Mean and 95% Credible Interval

Model Setup:

- Likelihood: $y \mid \theta \sim \text{Bernoulli}(\theta)$
- Prior: $\theta \sim \text{Beta}(\alpha, \beta)$
- Posterior: $\theta \mid y \sim \text{Beta}(y + \alpha, n y + \beta)$

Example Parameters:

- Number of trials n = 10
- Number of successes y = 7
- Prior parameters: $\alpha = 2$, $\beta = 2$

Posterior Mean and 95% Credible Interval

Posterior Distribution:

$$\theta \mid y \sim \text{Beta}(9,5)$$

Posterior Mean:

Mean
$$= \frac{\alpha'}{\alpha' + \beta'} = \frac{9}{9+5} = \frac{9}{14} \approx 0.643$$

95% Credible Interval:

• Compute quantiles using the Beta distribution:

Lower Bound =
$$Beta^{-1}(0.025; 9, 5)$$

Upper Bound = $Beta^{-1}(0.975; 9, 5)$

Posterior Mean and 95% Credible Interval

• Numerical values:

```
R> qbeta(0.025, 9, 5)
[1] 0.3857383
R> qbeta(0.975, 9, 5)
[1] 0.8614207
```

Result: The 95% credible interval for θ is approximately (0.386, 0.861).

Challenges with Non-Conjugate Prior

Challenges:

- No Closed-Form Solution: What if the posterior distribution $p(\theta | \mathbf{y})$ does not simplify to a standard form?
- **Numerical Approximation Required**: Direct calculation of posterior mean and credible intervals is not feasible.
- **MCMC Methods**: To approximate the posterior mean and credible interval, MCMC methods (e.g., Metropolis-Hastings, Gibbs sampling) must be used.

Summary: Non-conjugate priors may lead to complex posterior distributions that require advanced numerical techniques for estimation.

Frequentist vs. Bayesian Inference

• Frequentist Inference:

- Assumes a **fixed, true parameter** in the population.
- Estimation through **repeated sampling**.

• Bayesian Inference:

- Treats the parameter as a random variable, reflecting uncertainty.
- Combines prior beliefs with observed data to update beliefs (posterior distribution).
- **Misconception**: Bayesian inference does not imply the parameter is truly random, but reflects uncertainty.
- **Role of Prior**: Encapsulates prior knowledge or uncertainty, updated with data.
- **Philosophical Debate**: How to sensibly define objective priors?