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Principles of Bayesian Inference

Aims of sections 1-4:

• Introduce the foundations of Bayesian inference and compare it to
frequentist maximum likelihood.

• Motivate how Markov chain Monte Carlo (MCMC) simulations provide
numerical access to the posterior distributions.

• Discuss practical aspects of working with MCMC simulations.
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Bayes’ Theorem

• Two central components of a Bayesian model formulation.

• Observation model p(y|θ), which describes how the data y are generated for
given model parameters θ.

• Prior distribution p(θ) representing prior beliefs about the parameter vector θ

• Bayesian learning updates prior beliefs on θ based on information in the
data y using Bayes’ theorem

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

,

where p(y) is the marginal density of the data.
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Example

• Data y
i.i.d.∼ Be(π) with unknown success probability π ∈ (0,1).

• We consider n = 10 trials with one success (1) and nine failures (0).

• The likelihood is the product of each the probabilities of each individual
Bernoulli trial

L(π|y) =
n∏
i=1

p(π|yi) =
n∏
i=1

πyi(1 − π)1−yi = π
∑n

i=1 yi(1 − π)n−
∑n

i=1 yi .

• For the prior distribution of π, we use a Beta distribution with parameters
a > 0 and b > 0:

π ∼ Beta(a,b)
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Example

• The density function of the Beta distribution is:

p(π|a,b) = πa−1(1 − π)b−1

B(a,b)
, where B(a,b) =

Γ(a)Γ(b)

Γ(a+ b)
.

Here, Γ(·) is the Gamma function.

• The posterior distribution combines the likelihood function and the prior

p(π|y) ∝ L(π|y) · p(π|a,b)

=

(
n∏
i=1

πyi(1 − π)1−yi

)
· πa−1(1 − π)b−1

= π
∑n

i=1 yi+a−1(1 − π)n−
∑n

i=1 yi+b−1
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Example

• Hence, this is the kernel of a Beta distribution. Therefore, the posterior
distribution for π is:

π|y ∼ Beta

(
a+

n∑
i=1

yi,b+ n−
n∑
i=1

yi

)
.

• We can express the parameters of the posterior Beta distribution as:

ã = a+
n∑
i=1

yi, b̃ = b+ n−
n∑
i=1

yi.
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Example

In R:
R> y <- c(1, rep(0, 9))
R> prior <- function(p, a, b, ...) {
+ p^(a - 1) * (1 - p)^(b - 1) / beta(a, b)
+ }
R> likelihood <- function(p, ...) {
+ p^(sum(y)) * (1 - p)^(length(y) - sum(y))
+ }
R> posterior <- function(p, a, b, nc = TRUE, ...) {
+ if(nc) {
+ a <- a + sum(y)
+ b <- b + length(y) - sum(y)
+ pv <- p^(a - 1) * (1 - p)^(b - 1) / beta(a, b)
+ } else {
+ pv <- likelihood(p) * prior(p, a, b)
+ }
+ return(pv)
+ }
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Example

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

π

p(
π)

Beta(1, 1)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

π

p(
π)

Beta(1, 3)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

π

p(
π)

Beta(3, 1)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

π

p(
π|

y)

Beta(2, 10)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

π

p(
π|

y)

Beta(2, 12)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

π

p(
π|

y)

Beta(4, 10)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

π

p(
π|

y)

p(π|y) ∝ Β(2, 10)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
06

π

p(
π|

y)
p(π|y) ∝ Β(2, 12)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
25

π

p(
π|

y)

p(π|y) ∝ Β(4, 10)

Advanced Bayesian Methods – 2024 7 / 27



Relation to Maximum Likelihood Estimation

• If the prior distribution is flat, i.e.

p(θ) ∝ const,

the posterior is proportional to the likelihood:

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ) ∝ p(y|θ).

• Hence, the mode of the posterior coincides with the maximum likelihood
estimate.
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Relation to Maximum Likelihood Estimation

R> p <- seq(0, 1, length = 100)
R> par(mar = c(4, 4, 1, 1))
R> plot(likelihood(p), posterior(p, a = 1, b = 1))
R> abline(lm(posterior(p, a = 1, b = 1) ~ likelihood(p)))
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Relation to Maximum Likelihood Estimation

In general,

• the likelihood is a central part of Bayes’ theorem that quantifies the
information coming from the data and

• the posterior forms a compromise between data (likelihood) and prior
beliefs (prior).
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Prior Beliefs and Prior Elicitation

• Main conceptual difference between likelihood-based and Bayesian
inference: Coming up with a sensible prior distribution.

• The prior should reflect your prior beliefs about the parameter of interest.
• Very common practice:

• Pick a mathematically convenient class of distributions for the prior and
• only decide on the parameter of this prior distribution.

• For example, one can formulate belief statements such as

P(c1 ≤ θ ≤ c2) = 1 − α,

where c1 and c2 are pre-specified constants from which the prior
parameters are determined.

• It is also very common to run analyses for a variety of different priors to
study prior sensitivity.
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Prior Beliefs and Prior Elicitation

Example in R:

R> foo <- function(par, level = 0.9) {
+ p <- pbeta(0.7, par[1], par[2]) - pbeta(0.5, par[1], par[2])
+ (p - level)^2
+ }
R> opt <- optim(c(1, 1), fn = foo, method = "L-BFGS-B", lower = 1, upper = 100)
R> a <- opt$par[1]; b <- opt$par[2]
R> print(a)

[1] 38.34065

R> print(b)

[1] 25.81303

R> p <- seq(0, 1, length = 200)
R> par(mar = c(4, 4, 1, 1))
R> plot(p, prior(p, a, b), type = "l", lwd = 2)
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Prior Beliefs and Prior Elicitation
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Noninformative Prior Specifications

• Flat priors
f(θ) ∝ const

are a popular choice to implement noninformative priors (no value of the
parameter is favored a priori).

• Conceptual difficulties:

• For non-bounded parameter spaces, flat priors are not actual probability
distributions.

• Flat priors are not invariant under transformations of the parameter of interest.
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Noninformative Prior Specifications

• An alternative are reference priors for which the prior has the smallest
possible influence on the posterior (i.e., it maximizes the Kullback-Leibler
discrepancy between the prior and the posterior for given data).

• Another option is Jeffreys’ invariant prior:

p(θ) ∝
√
|F(θ)|

with expected Fisher information F(θ).

• For scalar parameters, Jeffreys’ prior is equivalent to the reference prior
approach.
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Bernoulli Experiment: Likelihood and Log-Likelihood

• Consider a Bernoulli experiment where the outcome y is 1 (success) with
probability θ and 0 (failure) with probability 1 − θ.

• The likelihood function for the parameter θ given the outcome y is:

p(y | θ) = θy(1 − θ)1−y.

• The log-likelihood function ℓ(θ) is:

ℓ(θ) = log p(y | θ) = y log θ + (1 − y) log(1 − θ).
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Jeffreys’ Prior for Bernoulli Experiment

• Compute the first derivative of the log-likelihood function:

∂ℓ(θ)

∂θ
=

y

θ
− 1 − y

1 − θ
.

• Compute the second derivative of the log-likelihood function:

∂2ℓ(θ)

∂θ2
= − y

θ2
− 1 − y

(1 − θ)2
.

• The Fisher information F(θ) is the negative expected value of the second
derivative:

F(θ) = −E
[
∂2ℓ(θ)

∂θ2

]
.
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Jeffreys’ Prior for Bernoulli Experiment

• Substituting the second derivative:

F(θ) = E
[
y

θ2
+

1 − y

(1 − θ)2

]
.

• Since y follows a Bernoulli distribution:

E[y] = θ and E[1 − y] = 1 − θ,

so

F(θ) =
θ

θ2
+

1 − θ

(1 − θ)2
=

1

θ
+

1

1 − θ
=

1

θ(1 − θ)
.
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Jeffreys’ Prior for Bernoulli Experiment

• Jeffreys’ prior is proportional to the square root of the Fisher information:

p(θ) ∝
√
F(θ).

• Therefore:

p(θ) ∝

√
1

θ(1 − θ)
.

• Simplifying:

p(θ) ∝ 1√
θ(1 − θ)

= θ0.5−1(1 − θ)0.5−1.

• This is equivalent to the Beta(0.5,0.5) distribution, which is a
noninformative prior reflecting minimal prior knowledge about θ.
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Jeffreys’ Prior for Bernoulli Experiment

Example in R:

R> Jeffreys <- function(p) { dbeta(p, 0.5, 0.5) }
R> p <- seq(0, 1, length = 100)
R> par(mar = c(4, 4, 1, 1))
R> plot(p, Jeffreys(p), type = "l", lwd = 2)
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Priors for the Success Probability

• The beta distribution is conjugate to the Bernoulli observation model, i.e.,
the posterior is then also a beta distribution with updated parameters.

• Elicit the hyperparameters a > 0 and b > 0 based on prior statements, e.g.,
the prior expectation, variance, quantiles, probabilities, etc.

• A flat prior is π ∼ U(0,1), which is also a beta distribution with a = b = 1.

• Jeffreys’ prior is a beta distribution with a = b = 0.5.
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Priors for the Success Probability

• A typical discussion on Bayesian inference is that:

• Frequentist inference assumes a true, fixed parameter value, whereas

• Bayesian inference assumes the parameter to be a random variable.

• This is, in general, misleading since the prior is merely used to reflect prior
(un)certainty about the parameter of interest.

• The underlying philosophical question is whether this can be done in a
sensible way . . .
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Posterior Mean and 95% Credible Interval

Model Setup:

• Likelihood: y | θ ∼ Bernoulli(θ)

• Prior: θ ∼ Beta(α, β)

• Posterior: θ | y ∼ Beta(y+ α,n− y+ β)

Example Parameters:

• Number of trials n = 10

• Number of successes y = 7

• Prior parameters: α = 2, β = 2
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Posterior Mean and 95% Credible Interval

Posterior Distribution:
θ | y ∼ Beta(9,5)

Posterior Mean:

Mean =
α′

α′ + β′ =
9

9 + 5
=

9

14
≈ 0.643

95% Credible Interval:

• Compute quantiles using the Beta distribution:

Lower Bound = Beta−1(0.025;9,5)

Upper Bound = Beta−1(0.975;9,5)
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Posterior Mean and 95% Credible Interval

• Numerical values:

R> qbeta(0.025, 9, 5)

[1] 0.3857383

R> qbeta(0.975, 9, 5)

[1] 0.8614207

Result: The 95% credible interval for θ is approximately (0.386,0.861).
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Challenges with Non-Conjugate Prior

Challenges:

• No Closed-Form Solution: What if the posterior distribution p(θ | y) does
not simplify to a standard form?

• Numerical Approximation Required: Direct calculation of posterior
mean and credible intervals is not feasible.

• MCMC Methods: To approximate the posterior mean and credible interval,
MCMC methods (e.g., Metropolis-Hastings, Gibbs sampling) must be used.

Summary: Non-conjugate priors may lead to complex posterior distributions that
require advanced numerical techniques for estimation.
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Frequentist vs. Bayesian Inference

• Frequentist Inference:
• Assumes a fixed, true parameter in the population.
• Estimation through repeated sampling.

• Bayesian Inference:
• Treats the parameter as a random variable, reflecting uncertainty.
• Combines prior beliefs with observed data to update beliefs (posterior

distribution).

• Misconception: Bayesian inference does not imply the parameter is truly
random, but reflects uncertainty.

• Role of Prior: Encapsulates prior knowledge or uncertainty, updated with
data.

• Philosophical Debate: How to sensibly define objective priors?
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